Please wait a minute...
img

官方微信

遥感技术与应用
模型与反演     
基于光谱混合的大气吸收通道发射率图像模拟
刘瑶1,张文娟2,张兵2,甘甫平1
(1.中国国土资源航空物探遥感中心,北京 100083;
2.中国科学院遥感与数字地球研究所,北京 100094)
Surface Emissivity Image Simulationfor Atmospheric Absorption Bands based on Spectral Mixing
Liu Yao1,Zhang Wenjuan2,Zhang Bing2,Gan Fuping1
(1.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources,Beijing 100083,China;2.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
 全文: PDF(13264 KB)  
摘要:
提出了一种基于光谱混合的大气强吸收通道地表发射率图像模拟方法,旨在为全链路图像模拟提供地表基础数据。首先,对数据源图像进行端元选择,获取图像端元光谱;然后,通过光谱匹配将地表测量光谱替代图像端元光谱进行丰度反演;最后,基于线性光谱混合模型,结合替代端元在吸收通道的地表测量发射率,实现发射率图像模拟。利用该方法,以Landsat 8 OLI多光谱图像为数据源,并假设JHU和USGS光谱库数据为数据源的地表测量光谱,进行了模拟试验和精度分析。鉴于真实的吸收通道地表发射率图像无法获得,精度分析采用了比较基于该方法模拟的OLI通道0.1mm反射率图像与真实反射率图像的方式。获得的模拟图像总体均方根误差分别为0.045和0.049,说明模拟方法可行且具有较高的精度。
关键词: 光谱混合大气吸收地表发射率图像模拟    
Abstract: A simulation method based on spectral mixing is proposed for surface emissivity image generation in atmospheric absorption bands,in order to provide surface input data for the corresponding endtoend image simulation.First,endmember selection is conducted on data source to acquire image endmember spectra.Then,substitute endmembers are selected from surfacemeasured spectra by spectral matching with image endmembers,and used for abundance inversion.Finally,using emissivity spectra of substitute endmember in the absorption bands and abundance maps,emissivity images are simulated based on linear spectral mixing model.In the simulation experiment,Landsat8 OLI images were used as data source,and JHU and USGS spectral library data were assumed to be ground spectra of the test case.Since actual emissivity images in absorption bands are unavailable,accuracy analysis is conducted by comparing OLI reflectance images with its simulations generated by the proposed method.Total RSMEs of simulated OLI images are 0.045 and 0.049,respectively;which shows the image simulation method is feasible and can produce images with high accuracy.

Key words: Spectral mixing    Atmospheric absorption    Surface emissivity    Image simulation
收稿日期: 2016-06-03 出版日期: 2017-09-13
:  TP 75  
基金资助: 国家杰出青年科学基金项目(41325004),国家科技高分辨率对地观测系统重大专项(30-Y20A06-9003-15/16、11-Y20A32-9001-15/17),国家自然科学基金项目(41271370)。

作者简介: 刘瑶(1988-),女,湖北蕲春人,工程师,主要从事遥感图像仿真模拟研究。Email:yao.liu_agrs@foxmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘瑶
张文娟
张兵
甘甫平

引用本文:

刘瑶,张文娟,张兵,甘甫平. 基于光谱混合的大气吸收通道发射率图像模拟[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2017.4.0674.

Liu Yao,Zhang Wenjuan,Zhang Bing,Gan Fuping. Surface Emissivity Image Simulationfor Atmospheric Absorption Bands based on Spectral Mixing. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2017.4.0674.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.4.0674        http://www.rsta.ac.cn/CN/Y2017/V32/I4/674

[1]Borner A,Wiest L,Keller P,et al.SENSOR:A Tool for the Simulation of Hyperspectral Remote Sensing Systems[J].ISPRS Journal of Photogrammetry and Remote Sensing,2001,55(5):299-312.
[2]Verhoef W,Bach H.Simulation of Sentinel3 Images by FourStream Surfaceatmosphere Radiative Transfer Modeling in the Optical and Thermal Domains[J].Remote Sensing of Environment,2012,120:197-207.
[3]Liu Y,Zhang W,Zhang B.TopofAtmosphere Image Simulation in the 4.3μm Midinfrared Absorption Bands[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(1):452-456.
[4]May C M,Maurer T O,Sanders J S,Visible and Thermal Spectrum Synthetic Image Generation with DIRSIG and MuSES for Ground Vehicle Identification Training[C]//Proc.SPIE Infrared Imaging Systems:Design,Analysis,Modeling,and Testing XXVIII,2017:101780W-101780W-11.
[5]Ye Qing,Sun Xiaoquan,Shao Li.Analysis of Optimum Detective Wavebands for Infrared Earlywarning Satellite[J].Infrared and Laser Engineering,2010,39(3):389393.[叶庆,孙晓泉,邵立.红外预警卫星最佳探测波段分析[J].红外与激光工程,2010,39(3):389-393.]
[6]Jiang Yue,Deng Lei,Zang Peng,Developmental State and Technical Features of American Spacebased Infrared Early Warning System[J].Journal of Air Force Radar Academy,2011,25(2):105108.[蒋跃,邓磊,臧鹏.美国天基红外预警系统的发展现状和技术特点[J].空军雷达学院学报,2011,25(2):105-108.]
[7]Sun Wen,Wang Gang,Yao Xiaoqiang,et al.General Situation and Enlightenment of Spacebased Infrared Earlywarning System of America[J].Transducer and Microsystem Technologies,2016,35(4):17.[孙文,王刚,姚小强,等.美国天基红外预警系统概况与启示[J].传感器与微系统,2016,35(4):1-7.]
[8]Cota S A,Kalman L S.PredictingTopofAtmosphere Radiance for Arbitrary Viewing Geometries from the Visible to Thermal Infrared[C]//SPIE Optical Engineering+ Applications.International Society for Optics and Photonics,2010:781307-781307-14.
[9]Li Z L,Tang B H,Wu H,et al.Satellitederived Land Surface Temperature:Current Status and Perspectives[J].Remote Sensing of Environment,2013,131:1437.
[10]Carlson F C.The DIRSIG User’s Manual[S].New York:Rochester Institute of Technology,2006.
[11]Guanter L,Segl K,Kaufmann H.Simulation of Optical RemoteSensing Scenes with Application to the Enmap Hyperspectral Mission[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2340-2351.
[12]Jacquemoud S,Baret F.PROSPECT:A Model of Leaf Optical Properties Spectra[J].Remote Sensing of Environment,1990,34(2):75-91.
[13]HuemmrichK.The Geosail Model:A Simple Addition to the SAIL Model to Describe Discontinuous Canopy Reflectance[J].Remote Sensing of Environment,2001,75(3):423-431.
[14]Hapke B.Bidirectional Reflectance Spectroscopy:1.Theory[J].Journal of Geophysical Research,1981,86(B4):3039-3054.
[15]Hapke B,Wells E.Bidirectional Reflectance Spectroscopy:2.Experiments and Observations[J].Journal of Geophysical Research,1981,86(B4):3055-3060.
[16]Liang S,Townshend J R.A Modified Hapke Model for Soil Bidirectional Reflectance[J].Remote Sensing of Environment,1996,55(1):1-10.
[17]Gege P.The Water Color Simulator WASI:An Integrating Software Tool for Analysis and Simulation of Optical In-Situ Spectra[J].Computers & Geosciences,2004,30(5):523-532.
[18]Cota S A,Bell J T,Boucher R H,et al.PICASSO:An EndtoEnd Image Simulation Tool for Space and Airborne Imaging Systems[J].Journal of Applied Remote Sensing,2010,4(1):43535-43535.
[19]Cota S A,Lomheim T S,Florio C J,et al.PICASSO:An EndToEnd Image Simulation Tool for Space and Airborne Imaging Systems Ⅱ.Extension to the Thermal Infrared:Equations and Methods[M].San Diego,California:SPIE,2011:81580G-1-81580G-25.
[20]Ye Zetian,Gu Xingfa.Simulation of Remote Sensing Images based on MIVIS Data[J].Acta Geodaetica et Cartographica Sinica,2000,29(3):235-239.[叶泽田,顾行发.利用MIVIS 数据进行遥感图像模拟的研究[J].测绘学报,2000,29(3):235-239.]
[21]Li Z L,Wu H,Wang N,et al.Land Surface Emissivity Retrieval from Satellite Data[J].International Journal of Remote Sensing,2013,34(9-10):3084-3127.
[22]Anderson G P,Felde G W,Hoke M L,et al.MODTRAN4based Atmospheric Correction Algorithm:FLAASH (Fast LineofSight Atmospheric Analysis of Spectral Hypercubes)[M].Orlando,FL:SPIE,2002:65-71.
[23]Perkins T,AdlerGolden S,Matthew M W,et al.Speed and Accuracy Improvements in FLAASH Atmospheric Correction of Hyperspectral Imagery[J].Optical Engineering,2012,51(11):111707.doi:10.1117/1.0E·51.11.111707.
[24]Kruse F,KiereinYoung K,Boardman J.Mineral Mapping at Cuprite,Nevada with A 63Channel Imaging Spectrometer[J].Photogrametric Engineering and Remote Sensing,1990,56(1):83-92.
[25]Heinz D C,Chang C I.Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):529-545.
 
[1] 王光镇,王静璞,邹学勇,韩柳,宗敏. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018, 33(1): 1-9.
[2] 马斅良,王钦军,陈玉. 基于图像模拟的蚀变矿物信息提取技术评价[J]. 遥感技术与应用, 2016, 31(4): 756-763.
[3] 王茂芝,徐文皙,王璐,郭科. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4): 616-625.
[4] 周玉洁,王卷乐,郭海会. 基于谐波分析和线性光谱模型的耕地信息提取[J]. 遥感技术与应用, 2015, 30(4): 706-713.
[5] 张文婷,金可懿,宋开山,杭艳红. 基于多端元混合光谱模型与Landsat影像的北京不透水层动态研究[J]. 遥感技术与应用, 2015, 30(2): 321-330.
[6] 李 桢,谭永滨,李 霖,于忠海,兰洪浩. 基于线性光谱混合分析的武汉市地表组分研究[J]. 遥感技术与应用, 2013, 28(5): 780-784.
[7] 高利鹏,赵华亮,刘明翔,张华. 基于遥感影像不透水层估算的震后城区损坏面积评估[J]. 遥感技术与应用, 2013, 28(4): 582-587.
[8] 王国军,张风丽,邵芸. 建筑物目标高分辨率SAR图像模拟方法[J]. 遥感技术与应用, 2013, 28(4): 594-603.
[9] 张 明,张 霞,赵 冬,黄长平,张立福. 一种用于线性光谱解混算法验证的模拟数据生成方法[J]. 遥感技术与应用, 2012, 27(5): 680-685.
[10] 刘正春,曾永年,何丽丽,吴孔江,靳文凭. 基于光谱归一化的变组分光谱混合分析(NMESMA)方法及其应用[J]. 遥感技术与应用, 2012, 27(2): 159-167.
[11] 潘竟虎,刘春雨,李晓雪. 基于混合光谱分解的兰州城市热岛与下垫面空间关系分析[J]. 遥感技术与应用, 2009, 24(4): 462-468.
[12] 陈本清,杨燕明. 基于光谱混合模型的河口表层悬浮泥沙浓度卫星遥感反演研究[J]. 遥感技术与应用, 2009, 24(4): 469-477.
[13] 谢虹,杨太保. 基于Landsat 的城市热特征研究——以兰州市为例[J]. 遥感技术与应用, 2008, 23(6): 677-681.
[14] 李俊杰,何隆华,戴锦芳,李杏朝,傅俏燕. 基于不透水地表比例的城市扩展研究[J]. 遥感技术与应用, 2008, 23(4): 424-427.
[15] 樊风雷. 基于线性光谱混合模型(LSMM)的两种不同端元值选取方法应用与评价——以广州市为例[J]. 遥感技术与应用, 2008, 23(3): 272-277.