Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 176-186    DOI: 10.11873/j.issn.1004-0323.2019.1.0176
遥感应用     
黄土高原水储量的时空变化及影响因素
胡鹏飞1,李净1,张彦丽1
(1.西北师范大学地理与环境科学学院,甘肃 兰州 730070;
2.中国科学院西北生态资源环境研究院 冰冻圈科学国家重点实验室,甘肃 兰州 730000;
3.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830000)
Temporal and Spatial Variation and Influencing Factors of Water Storage on the Loess Plateau
Hu Pengfei1,Li Jing1,Zhang Yanli1,Zhu Guofeng1,2,He Panxing3,Cao Yongpan2
(1.College of Geography and Environmental Science,Northwest Normal University,Lanzhou 730070,China;
2.State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;3.College of Grassland and Environment Sciences,Xinjiang Agricultural University,Urumqi 830000,China)
 全文: PDF(12147 KB)  
摘要: 近年来黄土高原下垫面情况变化巨大,将多源数据应用于水储量变化研究可进一步揭示该区域水循环过程。利用GRACE数据研究了2003~2015年黄土高原地区陆地水储量变化(TWSC)的时空分布特征,结合大气环流数据、TRMM(3B43)降水、GLDAS蒸散发和MODIS地表温度数据分析了气候变化和人类活动对TWSC的影响。结果表明:①2003~2015年黄土高原TWSC整体表现为下降趋势,下降速率约为-5.16±1.51 mm/a,季节变化表现为秋季>冬季>夏季>春季的下降趋势。②过去13 a黄土高原TWSC在空间上表现为自西向东减少,整体处于亏损状态,最小值可达-4.5 cm。③降水对黄土高原西南部、南部的TWSC有影响较大,地表温度对黄土高原东南部、东部的TWSC影响较大。④人类活动对山西和陕晋豫交界地带的TWSC影响较大。利用多源数据对比研究可以较准确地反映该区域水储量变化的时空分布情况,对水循环机理的进一步研究有较大帮助。
关键词: 黄土高原TWSC气候变化人类活动    
Abstract: In recent years,the conditions of the underlying surface of the Loess Plateau have changed greatly.We researched the changes of water storage by using multi-source data to further reveal the region’s water cycle process.GRACE data were used to study the temporal and spatial characteristics of Terrestrial Water Storage Changes (TWSC) in the Loess Plateau for 2003~2015 years,combined with the atmospheric circulation data,TRMM (3B43) precipitation,GLDAS evaporation and MODIS surface temperature data to analyze the impact of climate change and human activities on TWSC.The results shown that:①in the 2003~2015 years,the TWSC of Loess Plateau showed a decreasing trend with the rate of -5.16±1.51 mm/a,and the seasonal variation shown autumn>winter>summer>spring.②in the past 13 years,the TWSC of Loess Plateau were decreasing from west to east,and the whole were in the state of loss,the minimum value was up to -4.5 cm.③Precipitation has a greater influence on the TWSC in the southwest and south of Loess Plateau,but the surface temperature plays dominated role in the southeast and east.④Human activities have a greater impact on TWSC in Shanxi province and the border zone of Shaanxi,Shanxi and Henan.The comparative study of multi-source data can more accurately reflect the spatial and temporal distribution of water storage changes in the region,and it also have great significant for further research of water cycle process.
Key words: the Loess Plateau    TWSC    Climate change    Human activities
收稿日期: 2018-01-22 出版日期: 2019-04-02
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41661005、41261016、41561080),国家自然科学基金创新研究群体科学基金(41421061),冰冻圈科学国家重点实验室自主课题(SKLCS-ZZ-2017),农业部农业遥感监测与评价专项,农业部农业遥感创新课题资助。
作者简介: 胡鹏飞(1993-),男,甘肃平凉人,硕士研究生,主要从事资源环境遥感研究。E-mail:pfhu0213@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡鹏飞, 李净, 张彦丽. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186.

Hu Pengfei, Li Jing, Zhang Yanli, Zhu Guofeng, He Panxing, Cao Yongpan. Temporal and Spatial Variation and Influencing Factors of Water Storage on the Loess Plateau. Remote Sensing Technology and Application, 2019, 34(1): 176-186.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.1.0176        http://www.rsta.ac.cn/CN/Y2019/V34/I1/176

[1]Cao Y,Nan Z,Cheng G.GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China[J].Remote Sensing,2015,7(1):1021-1047. [2]Long D,Shen Y,Sun A,et al.Drought and Flood Monitoring for a Large Karst Plateau in Southwest China Using Extended GRACE Data[J].Remote Sensing of Environment,2014,155:145-160. [3]Ramillien G,Frappart F,Cazenave A,et al.Time Variations of Land Water Storage from an Inversion of 2 Years of GRACE Geoids[J].Earth and Planetary Science Letters,2005,235(1):283-301. [4]Hirschi M,Seneviratne S I,Schr C.Seasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins[J].Journal of Hydrometeorology,2006,7(1):39-60. [5]Chen J L,Wilson C R,Tapley B D,et al.2005 Drought Event in the Amazon River Basin as Measured by GRACE and Estimated by Climate Models[J].Journal of Geophysical Research:Solid Earth,2009,114:B505404.Doi:10.10291/2008JB006056. [6]Chen Yaning,Xu Changchun,Yang Yuhui,et al.Hydrology and Water Resources Variation and Its Response to Regional Climate Change in Xinjiang[J].Acta Geographica Sinica,2009,64(11):1331-1341.[陈亚宁,徐长春,杨余辉,等.新疆水文水资源变化及对区域气候变化的响应[J].地理学报,2009,64(11):1331-1341.] [7]Rodell M,Velicogna I,Famiglietti J S.Satellite-based Estimates of Groundwater Depletion in India[J].Nature,2009,460(7258):999-1002. [8]Su Xiaoli,Ping Jinsong,Ye Qixin.Terrestrial Water Variations in the North China Plain Revealed by the GRACE Mission[J].Sci China Earth Sci,2012,42(6):917-922.[苏晓莉,平劲松,叶其欣.GRACE 卫星重力观测揭示华北地区陆地水量变化[J].中国科学:地球科学,2012,42(6):917-922.] [9]Zhong Min,Duan Jianbin,Xu Houze,et al.Trend of China Land Water Storage Redistribution At Medi-and Large-Spatial Scales in Recent Five Years by Satellite Gravity Observations[J].Chinese Sci Bull,2009(9):1290-1294.[钟敏,段建宾,许厚泽,等.利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势[J].科学通报,2009(9):1290-1294.] [10]Cazenave A,Nerem R S.Redistributing Earth’s Mass[J].Science,2002,297(5582):783-784. [11]Cox C M,Chao B F.Detection of A Large-Scale Mass Redistribution in the Terrestrial System Since 1998[J].Science,2002,297(5582):831-833. [12]Xu Min,Ye Baisheng,Zhao Qiudong.Temporal and Spatial Pattern of Water Storage Changes Over the Yangtz River Basin During 2002~2010 based on GRACE Satellite Data[J].Progress in Geography,2013,32(1):68-77.[许民,叶柏生,赵求东.2002~2010 年长江流域 GRACE 水储量时空变化特征[J].地理科学进展,2013,32(1):68-77.] [13]Yang Shengtian,Yu Xinyi,Ding Jianli,et al.A Review of Water Issues Research in Central Asia[J].Acta Geographica Sinica,2017,72(1):79-93.[杨胜天,于心怡,丁建丽,等.中亚地区水问题研究综述[J].地理学报,2017,72(1):79-93.] [14]Tapley B D,Bettadpur S,Ries J C,et al.GRACE Measurements of Mass Variability in the Earth System[J].Science,2004,305(5683):503-505. [15]Ramillien G,Cazenave A,Brunau O.Global Time Variations of Hydrological Signals from GRACE Satellite Gravimetry[J].Geophysical Journal International,2004,158(3):813-826. [16]Crowley J W,Mitrovica J X,Bailey R C,et al.Land Water Storage Within the Congo Basin Inferred from GRACE Satellite Gravity Data[J].Geophysical Research Letters,2006,33(19):L19402.Doi:10.1029/2006GL027070. [17]Strassberg G,Scanlon B R,Rodell M.Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-Level Measurements from the High Plains Aquifer (USA)[J].Geophysical Research Letters,2007,34(14):L14402. [18]Feng W,Zhong M,Lemoine J M,et al.Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-based Measurements[J].Water Resources Research,2013,49(4):2110-2118. [19]Long D,Scanlon B R,Longuevergne L,et al.GRACE Satellite Monitoring of Large Depletion in Water Storage in Response to the 2011 Drought in Texas[J].Geophysical Research Letters,2013,40(13):3395-3401. [20]Yi H,Wen L.Satellite Gravity Measurement Monitoring Terrestrial Water Storage Change and Drought in the Continental United States[J].Scientific Reports,2016,6:19909.Doi:10.1038/Srep/9909. [21]Deng H,Chen Y.Influences of Recent Climate Change and Human Activities on Water Storage Variations in Central Asia[J].Journal of Hydrology,2017,544:46-57. [22]Duan Jianjun,Wang Yanguo,Wang Xiaofeng,et al.Impact of Climate Change and Human Activities on the Water Resources and Ecological Environments in the Tarim River Basin in 1957~2006[J].Journal of Glaciology and Geocryology,2009,31(5):781-791.[段建军,王彦国,王晓风,等.1957-2006 年塔里木河流域气候变化和人类活动对水资源和生态环境的影响[J].冰川冻土,2009,31(5):781-791.] [23]Cao Yanping,Nan Zhuotong.Monitoring Water Storage Variations in the Heihe River Basin by the GRACE Gravity Satellite[J].Remote Sensing Technology and Application,2011,26(6):719-727.[曹艳萍,南卓铜.利用 GRACE 重力卫星监测黑河流域水储量变化[J].遥感技术与应用,2011,26(6):719-727.] [24]Luo Zhicai,Li Qiong,Zhong Bo.Water Storage Variations in Heihe River Basin Recovered from GRACE Temporal Gravity[J].Acta Geodaetica Et Cartographica Sinica,2012,41(5):676-681.[罗志才,李琼,钟波.利用 GRACE 时变重力场反演黑河流域水储量变化[J].测绘学报,2012,41(5):676-681.] [25]Liao Mengsi,Zhang Xinping,Huang Huang,et al.Monitoring Water Storage Changes in Dongting Lake Basin from GRACE Gravity Satellite[J].Progress in Geophysics (In Chinese),2016,(1):61-68.[廖梦思,章新平,黄煌,等.利用 GRACE 卫星监测近10年洞庭湖流域水储量变化[J].地球物理学进展,2016,(1):61-68.] [26]Li Aihua,Cui Shengyu,Wang Hongrui,et al.Water Storage Changes in the Middle Reaches of the Yellow River Basin based on GRACE Time Variable Gravitation Model[J].Journal of Natural Resources,2017,32(3):461-473.[李爱华,崔胜玉,王红瑞,等.基于 GRACE卫星时变重力场模型的黄河中游地区水储量变化研究[J].自然资源学报,2017,32(3):461-473.] [27]Li Xiaoying,Ye Genmiao,Cai Chenkai,et al.Analysis and Prediction of the Anomaly of Terrestrial Water Storage in the Yangtze River Basin based on MODIS and GRACE[J].Journal of Yangtze River Scientific Research Institute,2018,35(5):130-135.[李晓英,叶根苗,蔡晨凯,等.基于 GRACE 和 MODIS 数据的长江流域陆地水储量变化分析及预测[J].长江科学院院报,2018,35(5):130-135.] [28]Ni Shengnan,Chen Jianli,Li Jin,et al.Terrestrial Water Storage Change in the Yangtze and Yellow River Basin from GRACE Time-Variable Gravity Measurements[J].Journal of Geodesy and Geodynamics,2014,34(4):49-55.[尼胜楠,陈剑利,李进,等.利用 GRACE 卫星时变重力场监测长江,黄河流域水储量变化[J].大地测量与地球动力学,2014,34(4):49-55.] [29]Li Wudong,Guo Jinyun,Chang Xiaotao,et al.Terrestrial Water Storage Change in the Tianshan Mountains of Xinjiang Measured by GRACE during 2003~2013[J].Geomatics and Information Science of Wuhan University,2017,42(7):1021-1026.[李武东,郭金运,常晓涛,等.利用 GRACE 重力卫星反演 2003~2013 年新疆天山地区陆地水储量时空变化[J].武汉大学学报:信息科学版,2017,42(7):1021-1026.] [30]Wang Zhicheng,Zhang Hui,Li Wanjiang,et al.Study on Water Storage Variations in the Akesu River Basin based on GRACE Dataset[J],Desert and Oasis Meteorology,2017,11(6):1-8.[王志成,张辉,李万江,等.基于GRACE数据的天山阿克苏河流域水储量变化分析[J].沙漠与绿洲气象,2017,11(6):1-8.] [31]Xu Min,Zhang Shiqiang,Wang Jian,et al.Temporal and Spatial Patterns of Water Storage Change of Qilian Mountains in Recent 8 Years based on GRACE[J].Arid Land Geography,2014,37(3):458-467.[许民,张世强,王建,等.利用 GRACE 重力卫星监测祁连山水储量时空变化[J].干旱区地理,2014,37(3):458-467.] [32]Sun Qian,Ding Jianli,Mamat·Sawut,et al.Temporal-Spatial Changes of Water Storage in Xinjiang,China during 2003~2012[J].Journal of Desert Research,2014,34(6):1650-1656.[孙倩,丁建丽,买买提·沙吾提,等.2003~2012年新疆陆地水储量时空变化[J].中国沙漠,2014 ,34(6):1650-1656.] [33]Hao Jiansheng,Zhang Feiyun,Zhao Xin,et al.Spatiotemporal Change of Water Storage and Its Influencing Factors in the Ili-Balkhash Basin based on GRACE Data[J].Remote Sensing Technology and Application,2017,32(5):883-892.[郝建盛,张飞云,赵鑫,等.基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J].遥感技术与应用,2017,32(5):883-892.] [34]Li Qiong,Luo Zhicai,Zhong Bo,et al.Terrestrial Water Storage Changes of the 2010 Southwest China Drought Detected by GRACE Temporal Gravity Filed[J].Chinese Journal of Geophysics,2013,56(6):1843-1849.[李琼,罗志才,钟波,等.利用 GRACE 时变重力场探测 2010 年中国西南干旱陆地水储量变化[J].地球物理学报,2013,56(6):1843-1849.] [35]Wang Yang,Wei Jiahua,Xie Hongwei.The Variation of Terrestrial Water Storage in the Qaidam Basin based on GRACE Data[J].South-To-North Water Transfers and Water Science & Technology,2018,16(1):75-82.[王洋,魏加华,解宏伟.基于GRACE的柴达木盆地水储量变化[J].南水北调与水利科技,2018,16(1):75-82.] [36]Shu Qiuyan,Pan Yun,Gong Huili,et al.Spatiotemporal Analysis of GRACE-based Groundwater Storage Variation in North China Plain[J].Remote Sensing for Land and Resources,2018,30(2):132-137.[束秋妍,潘云,宫辉力,等.基于GRACE的华北平原地下水储量时空变化分析[J].国土资源遥感,2018,30(2):132-137.] [37]Yan Jiabao,Jia Shaofeng,Lyu Aifeng,et al.Spatial-Temporal Variation Characteristics of China Terrestrial Water Storage in the Last Ten Years[J].South-To-North Water Transfers and Water Science & Technology(In Chinese),2016,14(4):21-28.[严家宝,贾绍凤,吕爱锋,等.近十年中国陆地水储量变化及其时空分布规律[J].南水北调与水利科技,2016,14(4):21-28.] [38]Chen Kun,Jiang Weiguo,He Fuhong,et al.Tempoal and Spatial Variations Research of GRACE Water Storage Changes in China[J].Journal of Natural Resources,2018,33(2):275-286.[陈坤,蒋卫国,何福红,等.基于 GRACE 数据的中国水储量变化特征分析[J].自然资源学报,2018,33(2):275-286.] [39]Ye Shuhua,Su Xiaoli,Ping Jinsong,et al.Land Water Storage Variations in China and Adjacent Areas Revealed by the GRACE Gravity Mission[J].Journal of Jilin University (Earth Science Edition),2011,41(5):1580-1586.[叶叔华,苏晓莉,平劲松,等.基于 GRACE卫星测量得到的中国及其周边地区陆地水量变化[J].吉林大学学报:地球科学版,2011,41(5):1580-1586.] [40]Zhao Q,Wu W,Wu Y.Variations in China’s Terrestrial Water Storage over the Past Decade Using GRACE Data[J].Geodesy and Geodynamics,2015,6(3):187-193. [41]Yang P,Xia J,Zhan C,et al.Monitoring the Spatio-Temporal Changes of Terrestrial Water Storage Using GRACE Data in the Tarim River Basin between 2002 and 2015[J].Science of the Total Environment,2017,595:218-228. [42]Cheng M K,Tapley B D.Temporal Variations in J2 from Analysis of SLR Data[C]∥Proc.12th International Workshop on Laser Ranging.2000. [43]Cheng M,Tapley B D.Variations in the Earth’s Oblateness During the Past 28 Years[J].Journal of Geophysical Research:Solid Earth,2004,109:B09402. [44]Swenson S,Wahr J.Post-Processing Removal of Correlated Errors in GRACE Data[J].Geophysical Research Letters,2006,33:L08402. [45]Wahr J,Molenaar M,Bryan F.Time Variability of the Earth’s Gravity Field:Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J].Journal of Geophysical Research:Solid Earth,1998,103(B12):30205-30229. [46]Landerer F W,Swenson S C.Accuracy of Scaled GRACE Terrestrial Water Storage Estimates[J].Water Resources Research,2012,48(4):04531. [47]Shu Meizhen,Yang Chuanguo,Li Yulong,et al.Temporal and Spatial Variation of Water Storage in Huang-Huai-Hai Area During 2003~2014 based on GRACE Satellite Data[J].South-To-North Water Transfers and Water Science & Technology,2018,16 (1):83-88.[束美珍,杨传国,李玉龙,等.黄淮海地区2003~2014年GRACE水储量时空变化[J].南水北调与水利科技,2018,16 (1):83-88.] [48]Cao Yanping,Zhao Fang.Terrestrial Water Storage Changes of He’nan Province from GRACE Satellite[J].Bulletin of Soil and Water Conservation,2017,37(2):295-301.[曹艳萍,赵芳.利用GRACE卫星研究河南省水储量时空变化特征[J].水土保持通报,2017,37(2):295-301.] [49]Xie Xiaowei,Xu Caijun,Gong Zheng,et al.Groundwater Storage Changes in Shan-Gan-Jin Plateau derived from GRACE[J].Bulletin of Surveying and Mapping,2018(1):133-137.[谢小伟,许才军,龚正,等.利用GRACE 反演陕甘晋高原地下水储量变化[J].测绘通报,2018(1):133-137.] [50]Xu Jiongxin.Impact of Human Activities on the Stream Flow of Yellow River[J].Advances in Water Science,2007,18(5):648-655.[许炯心.人类活动对黄河河川径流的影响[J].水科学进展,2007,18(5):648-655.] [51]He Yanzi,Yue Dapeng,Da Xing,et al.A Preliminary Study on Impact of Climatic Change and Human Activity on Water Resources:Taking Shaanxi Province as an Example[J].Acta Agriculturae Jiangxi,2016(12):87-93.[贺燕子,岳大鹏,达兴,等.气候变化和人类活动对水资源影响的初探——以陕西省为例[J].江西农业学报,2016(12):87-93.
[1] 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1): 166-175.
[2] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[3] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[4] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[5] 何霄嘉,董利苹,曲建升,曾静静. 我国适应气候变化数据发展现状、需求和战略建议[J]. 遥感技术与应用, 2017, 32(3): 585-592.
[6] 肖林,车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
[7] 胡宁科,李 新. 居延绿洲古遗址的遥感识别与分析[J]. 遥感技术与应用, 2013, 28(5): 890-897.
[8] 侯姗姗,雷莉萍,关贤华. 温室气体观测卫星GOSAT及产品[J]. 遥感技术与应用, 2013, 28(2): 269-275.
[9] 张建香,张勃,马中华,尹海霞,孙立伟. 基于遥感的植被覆盖变化分区研究——以黄土高原马莲河流域为例[J]. 遥感技术与应用, 2013, 28(1): 137-143.
[10] 贺振,贺俊平. 基于MODIS的黄土高原土地荒漠化动态监测[J]. 遥感技术与应用, 2011, 26(4): 476-481.
[11] 杨眉,王世新,周艺,王丽涛. DMSP/OLS夜间灯光数据应用研究综述[J]. 遥感技术与应用, 2011, 26(1): 45-51.
[12] 戴声佩, 张勃, 王海军, 郭玲霞, 王亚敏. 中国西北地区植被时空演变特征及其对气候变化的响应[J]. 遥感技术与应用, 2010, 25(1): 69-76.
[13] 韦 莉, 赵 军, 潘竟虎, 李 霞. 基于MODIS数据的黄土高原草地净初级生产力的估算研究[J]. 遥感技术与应用, 2009, 24(5): 660-664.
[14] 夏 露,刘咏梅,柯长青. 基于SPOT4数据的黄土高原植被动态变化研究[J]. 遥感技术与应用, 2008, 23(1): 67-71.
[15] 刘 蓉,文 军,张堂堂,刘远永,李振朝. 利用MERIS和AATSR资料估算黄土高原塬区植被含水量时空变化[J]. 遥感技术与应用, 2007, 22(3): 371-381.