Please wait a minute...
img

官方微信

遥感技术与应用  2000, Vol. 15 Issue (4): 241-245    DOI: 10.11873/j.issn.1004-0323.2000.4.241
综述     
RS、GIS、GPS在西北农业大开发中的应用前景
王鹏新1,龚健雅1,李小文2
(1.武汉大学测绘遥感信息工程国家重点实验室 湖北武汉  430079;2.北京师范大学资源与环境科学系 北京  100875)
Prospects of Applying RS,GIS and GPS Technologies to Agricultural Development in the Northwest of China
WANG Peng-xin1, GONG Jian-ya1,LI Xiao-wen2
(1.National Laboratory for Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan430079,China;2.Department of Resource and Environment Sciences,Beijing Normal University,Beijing100875,China)
 全文: PDF 
摘要:

遥感(RS)、地理信息系统(GIS)和全球定位系统(GPS)作为三大高新技术(“3S”技术),可以
独立地,也可以相互补充地为农业生产和开发提供强大的技术支撑。它们能快速准确地获取农业生
产系统的多维信息,尤其是时间维的信息,能综合性地管理和处理属性数据和空间数据,并能为农
业生产的决策提供相应的技术服务,进而精确地指导农业生产,促进生态环境的良性发展。论述了
“3S”技术在西北地区农业开发中的应用前景,着重于土壤水分的遥感反演以及干旱和荒漠化的动
态监测。

关键词: &ldquo3S&rdquo技术土壤水分干旱荒漠化农业开发西北地区    
Abstract:

 Remote sensing (RS), geographic information system (GIS) and global positioning system
(GPS), known as ' 3S' technologies, can be applied to agricultural fields separately or in combinations.
These technologies are used to obtain multidimensional information, especially for temporal series, in
agricultural production systems, to manage and process spatial and attribute data comprehensively, to
propose related information for agricultural decision-makers and farmers, and further to provide guidelines
for the regional agricultural production and sustainable development. In this paper, the prospects of
applying these technologies to develop agricultural production in the Northwest of China were discussed.
The discussions were centralized on retrievals of land surface temperature and soil moisture, and on
monitoring of drought occurrence and desertification dynamically, and on management of the data as well.
Most areas of the Northwest China belong to arid and semi-arid areas where rainfall is low and with uneven
spatial and temporal distributions. Rainfed agriculture is popular in the region. Many field studies showed
that there are two main constraints for the region' s agricultural development, one is the shortage of soil
water supply and another is that soil fertility is low. The soil water shortage is often occurred over a large
area, therefore, the only way to monitor the shortage and to estimate its extent is using remote sensing
technology. For bare soil or soil with sparse vegetation coverage, remotely sensed data can be used to
model soil thermal inertia, and further to model soil moisture. Taking NOAA advanced very high
resolution radiometer (AVHRR) data as a example, firstly, channel 1 (0.58~0.68μm) and channel 2 (0.
72~1.10μm) can be used to retrieve soil surface albedo, and for channel 4 (10.3~11.3μm) and channel
5 (11.5~12.50μm) to retrieve land surface temperature by the so-called spilt window technology.
Secondly, a model of soil real thermal inertia was established based on solving near-surface conductive heat
transfer equation by applying Fourier series method. And finally, an empirical or semi-empirical relation
between soil surface moisture and soil thermal inertia can be found by applying regression approaches. For
the vegetation covered areas, different indices, such as Normalized Difference Vegetation Index (NDVI),
Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Anomaly Vegetation Index
(AVI), were also explored from AVHRR data, and these indices can be used to monitor drought
occurrence.The Northwest of China located in the inland of Eurasia, soil wind and water erosions are very
serious in the region, therefore, soil/land desertification is also occurred extensively, especially in the arid
areas caused by wind erosion and in the semi-arid areas of the Loess Plateau caused by water runoff. It is
very useful to investigate the gradation of desertification and as well as to study the spatial and temporal
distributions of desertification by using satellite remotely sensed images. For images with low spatial
resolution, such as AVHRR, they can be used to monitor desertification over a large area during a long
period, and for high spatial resolution image data, such as Landsat, these data can be used to monitor
desertification in a relatively small area in detail.GPS technology can be applied to acquiring precision
positions when field surveys are carried out or remotely sensed missions are implemented. While GIS
technology is an effective tool for storing, analyzing, managing and updating of spatial and attribute data,
including remotely sensed data and GPS acquired data.

Key words: ‘3S’Technologies    Soil moisture    Drought    Desertification    Agricultural Development    The
Northwest of China
收稿日期: 2000-06-29 出版日期: 2012-02-23
:  TP 79/P 208  
基金资助:

国家自然科学基金“用热点卫星数据研究地表的热点效应(49971059)”资助项目。

作者简介: 王鹏新(1965-),男,博士生,现从事遥感技术在农业中的应用研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王鹏新,龚健雅,李小文. RS、GIS、GPS在西北农业大开发中的应用前景[J]. 遥感技术与应用, 2000, 15(4): 241-245.

WANG Peng-xin, GONG Jian-ya,LI Xiao-wen. Prospects of Applying RS,GIS and GPS Technologies to Agricultural Development in the Northwest of China. Remote Sensing Technology and Application, 2000, 15(4): 241-245.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2000.4.241        http://www.rsta.ac.cn/CN/Y2000/V15/I4/241


〔1〕 石元春.“3S”技术与精确农业〔EB/OL〕. http://www.njau.edu.cn. 1999-6-29.
〔2〕  Manabe S. Climate and the Ocean Circulation: The Atmospheric Circultion and the Hydrology of the Earth' s Surface〔J〕. Monthly Weather Review, 1969, 97:739~774.
〔3〕  Gruszczynska M, Dabrowska-Zielinska K, Stankiewice K,et al. Remote Sensing Data Applied for Monitoring Condition of Cereals〔A〕.Gudmandsen. Future Trend in Remote Sensing 〔C〕. Balkema: Rotterdam, 1998. 243~262.
〔4〕  Watson K. Geologic Application of the Thermal Infrared Images〔A〕. Proceedings of the IEEE〔C〕. 1975, 63:126~137.
〔5〕  Price C J. On the Analysis of Thermal Infrared Imagery:The Limited Utility of Apparent Thermal Inertia〔J〕. Remote Sensing of Environment, 1985, 18: 59~73.
〔6〕 隋洪智,田国良,李建军,等.热惯量法监测土壤水分〔A〕.田国良.遥感动态研究〔C〕.北京:科学出版社, 1990.
〔7〕 马蔼乃.遥感信息模型〔M〕.北京:北京大学出版社,1997.
〔8〕  Price J C. Land Surface Temperature Measurement for the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer〔J〕. Journal of Geophysical Reasearch, 1984, 89: 7231~7237.
〔9〕  Coll C, Caselle V, Sobrino A,et al. On the Atmospheric Dependence of a Split-window Equation for Land Surface Temperature〔J〕. International Journal of Remote Sensing,1994,15: 105~122.
〔10〕  Sobrino J A, Coll C, Caselle V. Atmospheric Correction for Land Surface Temperature Using NOAA-11 Channels 4 and 5〔J〕. Remote Sensing of Environment, 1991,38:19~34.
〔11〕  Franca G B, Cracknell A P. Retrieval Land and Sea Surface Temperature Using NOAA-11 Data in Northeastern Brazil 〔J〕. International Journal of Remote Sensing, 1994,15:1695~1712.
〔12〕  Becker F, Li Z L. Towards a Local Split Window Method Over Land Surface〔J〕. International Journal of Remote Sensing, 1990,11:369~393.
〔13〕  Kerr Y H, Lagouarde J P, Imbernon J. Accurate Land Surface Temperature Retrieval from NOAA Data with Using of an Improved Split Window Algorithm〔J〕. Remote Sensing of Environment, 1992,41:197~209.
〔14〕  He C, Kittleson K, Bartholic J. Evapotranspiration Monitored from Satellites as An Indication of Shift and Impact of Vegetation Ghange〔A〕. Presented at Twenty-First International Symposium on Remote Sensing of Environment〔C〕.Ann Arbor, Michigan,1987.
〔15〕  Kogan F N. Remote Sensing of Weather Impacts on Vegetation in Non-homogenous Areaa〔J〕. International Journal of Remote Sensing, 1990,11:1405~1419.
〔16〕  Kogan F N. Application of Vegetation Index and Brightness Temperature for Drought Detection〔J〕. Advances in Space Research,1995,15:91~100.
〔17〕  China National Committee for the Implementation of the United Nations Convention to Combat Desertification. China Country Paper to Combat Desertification〔M〕. Beijing: China Forestry Publishing House, 1997.
〔18〕 陆大道,薛风旋. 1997中国区域发展报告〔M〕.北京:商务印书馆,1997.
〔19〕 王晓方,申茂向.走出中国荒漠化防治的误区:局部改善、整体扩大局势何时扭转〔M〕.中华人民共和国科学技术部农村科技司, 1998.

[1] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[2] 王光镇,王静璞,邹学勇,韩柳,宗敏. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018, 33(1): 1-9.
[3] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[4] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[5] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[6] 卢美圻,魏鸣. GPM资料在分析“彩虹”台风降水垂直结构中的应用[J]. 遥感技术与应用, 2017, 32(5): 904-912.
[7] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[8] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[9] 于惠,吴玉锋,金毅,张峰. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
[10] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[11] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[12] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[13] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[14] 于博文,田淑芳. “高分一号”卫星数据几何校正研究[J]. 遥感技术与应用, 2017, 32(1): 133-139.
[15] 李小龙,杨英宝,曹利娟,章勇. 基于遥感和CFD模拟的城市绿地形态对热环境的影响研究[J]. 遥感技术与应用, 2016, 31(6): 1150-1157.