Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (4): 530-535    DOI: 10.11873/j.issn.1004-0323.2012.4.530
图像与数据处理     
基于波段反射率模拟的遥感影像重构研究
凌成星,鞠洪波,张怀清
(中国林业科学研究院资源信息研究所,北京 100091)
Research on Image Restructured based on Band Reflectance Simulation
Ling Chengxing,Ju Hongbo,Zhang Huaiqing
(Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China)
 全文: PDF(2334 KB)  
摘要:

为了增加TM遥感数据单波段信息量和视觉感知力,实现定量模拟TM遥感影像各波段反射率,提出一种TM遥感影像图像处理新方法,即在不破坏原有波段光谱特征的基础上重构TM波段反射率模拟图像。选取图像质量评价指数进行客观定量评价分析,实验结果表明:单波段信息熵值平均增加1.35,获得的均方误差系数和峰值信噪比值有明显变化,均方误差值平均减少11.2,重构的模拟单反射率TM影像灰度级离散程度集中,信息量丰富,图像增强变化和光谱信息优化程度都有显著提高。

关键词: 反射率图像处理定量模拟图像重构质量评价    
Abstract:

This paper presents a new method for Landsat TM Image processing which can be used to quantitative simulating each band reflectance of TM image.On the basis of non-destruction of the original band spectral features,it improved single band information and visual sensitivity.The restructured Image quality were analyzed by image quality assessment indexes,and the results show that the image enhancement change and spectral information optimization degree of reconstructed Image have greatly improved.

Key words: Reflectance    Image processing    Quantitative Simulating    Image restructured    Quality assessment
收稿日期: 2011-07-27 出版日期: 2012-08-24
:  TP 79  
基金资助:

创新方法工作专项(2008IM050100),国家重大专项(E0305/1112/02)。

作者简介: 凌成星(1982-),男,四川宜宾人,博士研究生,主要从事遥感信息技术及湿地资源监测研究。Email:lingchengxingjob@yahoo.com.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

凌成星,鞠洪波,张怀清. 基于波段反射率模拟的遥感影像重构研究[J]. 遥感技术与应用, 2012, 27(4): 530-535.

Ling Chengxing,Ju Hongbo,Zhang Huaiqing. Research on Image Restructured based on Band Reflectance Simulation. Remote Sensing Technology and Application, 2012, 27(4): 530-535.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.4.530        http://www.rsta.ac.cn/CN/Y2012/V27/I4/530

[1]Liangrocapart L S,Petrou M.A Two-layer Model of the Bidirectional Reflectance of Homogeneous Vegetation Canopies[J].Remote Sensing of Environment,2002,80(1):17-35.
[2]Gemmell F,Varjo J,Strandstrom M.Estimating Forest Cover in a Boreal Forest Test Site Using Thematic Mapper Data from Two Dates[J].Remote Sensing of Environment,2001,77(2):197-211.
[3]Li Yunmei,Wang Renchao.Simulation of Bi-directional Reflectance on Rice Canopy and Its Inversion[J].Chinese Journal of Rice Science,2002,16(3):291-294.[李云梅,王人潮.水稻冠层二向反射率的模拟及其反演[J].中国水稻科学,2002,16(3):291-294.]
[4]Cheng Jieliang,Shi Zhou.Observation and Simulation of Bi-directional Spectral Reflectance on Different Type of Soils[J].Spectroscopy and Spectral Analysis,2008,28(5):1007-1011.[程街亮,史舟.不同类型土壤的二向反射光谱特征及模拟[J].光谱学与光谱分析,2008,28(5):1007-1011.]
[5]Liu Huanjun,Zhang Bai.Black Soil Organic Matter Content Prediction based on Reflectance Simulation Models[J].Spectroscopy and Spectral Analysis,2008,28(12):2947-2950.[刘焕军,张柏.基于反射率模拟模型的黑土有机质含量估测[J].光谱学与光谱分析,2008,28(12):2947-2950.]
[6]Hong Guanlin,Shen Fang.Modeling of Seawater Reflectance in the Yangtze Estuary and the Adjacent Sea[J].Journal of East China Normal University (Natural Science),2012,1:37-46.[洪官林,沈芳.长江口及邻近海域水体反射率的模拟[J].华东师范大学学报(自然科学版),2012,1:37-46.]
[7]Fraster R S,Interaction Mechanisms Within the Atmosphere in Manual of Remote Sensing[M].Falls Church:American Society of Photogrammetry,1975.
[8]Markham B L,Barker J L.Landsat-MSS and TM Post Calibration Dynamic Ranges,Atmospheric Reflectance and at Satellite Temperature[J].EOSAT.Landsat Technical Notes,1986,(1):3-8.
[9]Schneider  K,Mauser  W.Processing and Accuracy of Landsat Thematic Mapper Data for Lake Surface Temperature Measurement[J].International Journal of Remote Sensing,1996,(17):2027-2041.
[10]Jacquemoud S,Bacour C.Comparison of Four Radiative Tr-ansfer Models to Simulate Plant Canopies Reflectance Direct and Inverse Mode[J].Remote Sensing of Environment,2000,74(3):471-481.
[11]Prabhakara C,Dalu G,Kunde V G.Estimation of Sea Temperature from Remote Sensing in the 11 to 12 pm Window Region[J].Journal of Geophysical Research Atmospheres,1974,(79):5039-5044.
[12]Gastellu Etchecorry J P,Gascon F.An Interpolation Procedure for Generalizing a Look up Table Inversion Method[J].Remote Sensing of Environment,2003,87(1):55-71.
[13]Wang Kongqiao,Shen Lansun,Xing Xin.A Quality Assessment Method of Image based on Visual Interests[J].Journal of Image and Graphics,2000,5(4):300-303.[汪孔桥,沈兰荪,邢昕.一种基于视觉兴趣性的图象质量评价方法[J].中国图象图形学报,2000,5(4):300-303.]
[14]Sheikh H R,Bovik A.Image Information and Visual Quality[J].IEEE Transactions on Image Processing,2006,15:430-444.
[15]Zhou Jingchao,Dai Ruwei,Xiao Baihua.Overview of Image Quality Assessment Research[J].Computer Science,2008,35:1-8.[周景超,戴汝为,肖柏华.图像质量评价研究综述[J].计算机科学,2008,35:1-8.]

[1] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[2] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[3] 李兆明,陈洪滨. 使用金属球定标X波段固态天气雷达[J]. 遥感技术与应用, 2018, 33(2): 259-266.
[4] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[5] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[6] 陈瑜丽,沈芳. 长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析[J]. 遥感技术与应用, 2016, 31(1): 126-133.
[7] 毛召武,程结海,袁占良. 顾及面积和位置差异的高分遥感影像分割质量评价方法[J]. 遥感技术与应用, 2016, 31(1): 186-193.
[8] 云婷,董晓龙. 星载微波散射计高分辨率σ0图像重构方法研究[J]. 遥感技术与应用, 2015, 30(3): 495-503.
[9] 程洋,童立强. 基于背景多层次分离的遥感矿化蚀变信息提取模型及应用实例[J]. 遥感技术与应用, 2015, 30(3): 586-591.
[10] 张鹏,刘勇. MOD09A1数据产品中缺失条带的插补方法[J]. 遥感技术与应用, 2015, 30(2): 331-336.
[11] 吴岩真,闻建光,王佐成,唐勇,窦宝成. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114.
[12] 李红星,李弘毅,梁继,郝晓华,王建. 吸光性污染物对积雪光谱反射率的影响研究[J]. 遥感技术与应用, 2014, 29(5): 782-787.
[13] 胡洋,习晓环,王成,肖勇. Pléiades卫星影像融合方法与质量评价[J]. 遥感技术与应用, 2014, 29(3): 476-481.
[14] 杨凯,沈渭寿,刘波,欧阳琰. 那曲典型草地植被光谱特征分析[J]. 遥感技术与应用, 2014, 29(1): 40-45.
[15] 黄永喜,李晓松,吴炳方,董泰锋. 基于改进的ESTARFM数据融合方法研究[J]. 遥感技术与应用, 2013, 28(5): 753-760.