Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (3): 533-542    DOI: 10.11873/j.issn.1004-0323.2013.3.533
模型与反演     
全极化微波信号海面风场反演技术现状与发展趋势
张勇1,2,3,孙强1,吕达仁1
(1.中国科学院大气物理研究所,北京 100029;2.中国科学院大学,北京 100049;
3.北京应用气象研究所,北京 100029)
Overview of Sea Surface Wind Vector Retrieval Using Fully Polarimetric Microwave Signal 
Zhang Yong1,2,3,Sun Qiang1,Lv Daren1
(1.Instititue of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Beijing Institute of Applied Meteorology Research,Beijing 100029,China)
 全文: PDF(1808 KB)  
摘要:

全极化微波辐射计是一种新型的被动微波遥感仪器,可以测量海面辐射的全部4个Stokes参数,提供了测量海面风场的一种新方法。首先介绍了国内外先进微波辐射计的技术特点及其海洋遥感应用情况,然后描述了海面微波发射信号的变化机理,以及海面全极化信号的风向谐波特征及其反演海面风场的优势,归纳了全极化微波信号海面风场反演的总体技术思路和产品精度,最后分析了全极化微波辐射计风场反演的关键技术和难点,并对该项技术的发展进行了展望。

关键词: 微波全极化辐射计海面风场反演    
Abstract:

With the launch of the WindSat instrument on the Coriolis spacecraft on January 6,2003,a new era in microwave radiometer began.WindSat is the first fully polarimetric spaceborne microwave radiometer.Fully polarimetric microwave radiometer is a new passive remote sensing instrument,which can measure the whole of four Stokes parameters of sea surface radiation,providing a new technique for sea surface wind vector measurement.In the first place,some instrument characteristics and application in ocean remote sensing for some advanced spaceborne microwave radiometers in the world are introduced in this paper.The radiometers include SSM/I,TMI,AMSR-E,AMSR2 and WindSat.Secondly,the variation mechanism of microwave emission signals from ocean is reviewed,and wind direction harmonics of polarimetric signals from wind-induced roughened sea surface and their advantages in wind vector retrieval are discussed.Finally,the main ideas of retrieval accuracy and difficulties of sea surface wind vector retrieval technique using fully polarimetric microwave signal are summaried in detail,and development direction of this technique is prospected.

Key words: Microwave    Fully Polarimetric    Radiomete    ;Ocean Wind Vector    Retrieval
收稿日期: 2012-07-25 出版日期: 2013-07-05
:  P 732.1  
通讯作者: 吕达仁(1940-),男,江苏常熟人,研究员,主要从事大气与地球环境遥感、大气辐射传输、中层大气与日地物理,生态与气候相互作用的探测与理论模式等方面的研究。Email:ludr@mail.iap.ac.cn。   
作者简介: 张勇(1976-),男,湖南湘潭人,博士,工程师,主要从事卫星大气和海洋遥感研究。Email:yongzhang@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张勇
孙强
吕达仁

引用本文:

张勇,孙强,吕达仁. 全极化微波信号海面风场反演技术现状与发展趋势[J]. 遥感技术与应用, 2013, 28(3): 533-542.

Zhang Yong,Sun Qiang,Lv Daren. Overview of Sea Surface Wind Vector Retrieval Using Fully Polarimetric Microwave Signal . Remote Sensing Technology and Application, 2013, 28(3): 533-542.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.3.533        http://www.rsta.ac.cn/CN/Y2013/V28/I3/533

[1]Njoku E G,Stacey J M,Barath F T.The Seasat Scanning Multichannel Microwave Radiometer (SMMR):Instrument Description and Performance[J].IEEE Journal of Oceanic Engineering,1980,OE-5:100-115.

[2]Hollinger J P,Peirce J L,Poe G A.SSM/I Instrument Evaluation[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):781-790.

[3]Kummerow C D,Simpson J J,Thiele O W,et al.The Status of the Tropical Rainfall Measuring Mission(TRMM) after Two Years in Orbit[J].Journal of Applied Meteorology,2000,39(12):1965-1982.

[4]Ascroft P D,Wentz F J.AMSR Level 2A Algorithm[R].Remote Sensing System,Santa Rosa,CA,RSS Technical Report 121599B-1,2000.

[5]Kerr Y H,Waldteufel P,Wigneron J P,et al.The SMOS Mission:New Tool for Monitoring Key Elements of the Global Water Cycle[J].Proceedings of the IEEE,2010,98(5):666-687.

[6]Le Vine D M,Lagerloef G S E,Torrusio S E.Aquarius and Remote Sensing of Sea Surface Salinity from Space[J].Proceedings of the IEEE,2010,98(5):688-703.[7]Oki T,Imaoka K,Kachi M.AMSR Instruments on GCOM-W1/2:Concepts and Applications[C]//IEEE Geoscience and Remote Sensing Symposium,Honolulu,2010:1363-1366.

[8]Zhang Shengwei,Jiang Jingshan,Wang Zhenzhan,et al.Multi-frequency Microwave Radiometer on“SZ-4” Spaceship and Its Applications[J].Remote Sensing Technology and Application,2005,20(1):68-73.[张升伟,姜景山,王振占,等.神舟4号飞船多频段微波辐射计及其应用[J].遥感技术与应用,2005,20(1):68-73.]

[9]National Satellite Ocean Application Service.Introduction of HY-2,2011[EB/OL].http://www.nsoas.gov.cn/HY2AZhuanti/HY2A/hy202.html.[国家卫星海洋应用中心.海洋二号卫星介绍,2011[EB/OL].http://www.nsoas.gov.cn/HY2AZhuanti/HY2A/hy202.html.]

[10]Gaiser P W,Germain K S,Twarog E M,et al.The WindSat Spaceborne Polarimetric Microwave Radiometer:Sensor Description and Early Orbit Performance[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(11):2347-2361.

[11]Wentz F J.Measurement of Oceanic Wind Vector Using Satellite Microwave Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):960-972.

[12]Smith P M.The Emissivity of Sea Foam at 19 and 37 GHz[J].IEEE Transactions on Geoscience and Remote Sensing,1988,GE-26:541-547.

[13]Yueh S H,Nghiem S V,Kwok R,et al.Polarimetric Thermal Emission from Periodic Water Surfaces[J].Radio Science,1994,29(1):87-96.

[14]Yueh S H,Wilson W J,Li F K,et al.Polarimetric Measurements of Sea Surface Brightness Temperatures Using an Aircraft K-Band Radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(1):85-92.

[15]Yueh S H,Wilson W J,Li F K,et al.Polarimetric Brightness Temperatures of Sea Surfaces Measured with Aircraft K- and Ka-Band Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1177-1187.

[16]Yueh S H,Wilson W J,Dinardo S,et al.Polarimetric Microwave Brightness Signatures of Ocean Wind Directions[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):949-959.

[17]Piepmeier J R,Gasiewski A J.High-resolution Passive Polarimetric Microwave Mapping of Ocean Surface Wind Vector Fields[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):606-622.

[18]Meissner T,Wentz F J.Anupdated Analysis of the Ocean Surface Wind Direction Signal in Passive Microwave Brightness Temperatures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1230-1240.

[19]Yueh S H,Wilson W J,Dinardo S J,et al.Polarimetric Microwave Wind Radiometer Model Function and Retrieval Testing for WindSat[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):584-596.

[20]Wentz F J.A Well-calibrated Ocean Algorithm for SSM/I[J].Journal of Geophysical Research,1997,102(C4):8703-8718.

[21]Wentz F J,Meissner T.AMSR Ocean Algorithm,Version 2,Algorithm Theoretical Basis Document[R].Remote Sensing System,Santa Rosa,CA,RSS Technical Report.121599A-1,Nov.2000.

[22]Bettenhausen M H,Smith C K,Bevilacqua R M,et al.A Nonlinear Optimization Algorithm for WindSat Wind Vector Retrievals[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):597-610.

[23]Jelenak Z,Mavor T P,Connor L,et al.Validation of Ocean Wind Vector Retrievals from WindSat Polarimetric Measurements[C]//Proceedings SPIE 5656,Active and Passive Remote Sensing of the Oceans,Bellingham,2005.

[24]Shaffer S J,Dunbar R S,Hsiao S V,et al.A Median-filter based Ambiguity Removal Algorithm for NSCAT[J].IEEE Transactions on Geoscience and Remote Sensing,1991,29(1):167-174.

[25]Freilich M H,Vanhoff B A.The Accuracy of Preliminary WindSat Vector Wind Measurements:Comparisons with NDBC〖HJ2.18mm〗 Buoys and QuikSCAT[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):622-637.

[26]Wentz F J,Meissner T,Smith D K.Assessment of the Initial Release of WindSat Wind Retrievals[R].Remote Sensing System,Santa Rosa,CA,RSS Technical Report 010605,2005.

[27]Jiang Xingwei,Song Qingtao.Satellite Microwave Measurements of the Global Oceans and Future Missions[J].Review of Science and Technology,2010,28(3):105-111.[蒋兴伟,宋清涛.海洋卫星微波遥感技术发展现状与展望[J].科技导报,2010,28(3):105-111.]

[28]Lyzenga D R.Comparison of WindSat Brightness Temperatures with Two-Scale Model Predictions[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):549-559.

[29]Johnson J T.An Efficient Two-scale Model for the Computation of Thermal Emission and Atmospheric Reflection from the Sea Surface[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):560-568.

[30]Wang Zhenzhan.Sea Surface Wind Vector Measured by Polarimetric Microwave Radiometer—Principle,System Design,and Simulation Study[D].Beijing:Graduate University of Chinese Academy of Sciences,2005.[王振占.海面风场全极化微波辐射测量—原理、系统设计与模拟研究[D].北京:中国科学院研究生院,2005.]

[31]Meissner T,Wentz F J.The Emissivity of the Ocean Surface between 6 and 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(8):3004-3026.

[32]Padmanabhan S,Reising S C,Asher W E,et al.Effects of Foam on Ocean Surface Microwave Emission Inferred from Radiometric Observations of Reproducible Breaking Waves[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):569-583.

[33]Liu Jingyi.Research on Problems of Polarimetric Microwave Radiometer Calibration and Wind Vector Retrieval[D].Beijing:Graduate University of Chinese Academy of Sciences,2007.[刘璟怡.全极化微波辐射计定标和风场反演若干问题研究[D].北京:中国科学院研究生院,2007.]

[34]Quilfen Y,Prigent C,Chapron B,et al.The Potential of QuikSCAT and WindSat Observations for the Estimation of Sea Surface Wind Vector under Severe Weather Conditions[J].Journal of Geophysical Research,2007,112(C09023):49-66.

[35]Meissner T,Wentz F J.Wind Vector Retrievals under Rain with Passive Satellite Microwave Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3065-3083.

[36]Rodríguez E,Gaston R W,Durden S L,et al.A Scatterometer for XOVWM,the Extended Ocean Vector Winds Mission[C]//Radar Conference,2009 IEEE,Pasadena,2009:1-4.

[1] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[2] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[3] 李姣姣,刘玉,陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价#br#[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[4] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[5] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[6] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[7] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[8] 王纪坤,陈正华,余克服,黄荣永,王英辉. 珊瑚礁区多光谱遥感水深反演研究[J]. 遥感技术与应用, 2018, 33(1): 61-67.
[9] 马丽娜,李青,姜苏麟. 地基微波辐射计的亮温观测与模拟数据的一致性分析和云检测[J]. 遥感技术与应用, 2018, 33(1): 68-77.
[10] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[11] 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983-997.
[12] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[13] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[14] 王刚,董晓龙,朱迪. 基于星载旋转扫描雷达的高分辨率实现[J]. 遥感技术与应用, 2017, 32(6): 1071-1077.
[15] 吴仪,邓孺孺,秦雁,梁业恒,熊龙海. 新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J]. 遥感技术与应用, 2017, 32(5): 825-834.