Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (4): 714-720    DOI: 10.11873/j.issn.1004-0323.2013.4.714
模型与反演     
波段位置和宽度对河口湿地4种植被NDVI的影响
林贤彪1,2,何诗2,林啸1,2,3,章文龙1,2,张永勋1,2,曾从盛1,2,3
(1.福建师范大学地理研究所,福建 福州 350007;2.福建师范大学地理科学学院,福建 福州 350007;
3.福建师范大学亚热带湿地研究中心,福建 福州 350007)
Effects of Band Position and Bandwidth on NDVI Measurements of Four Kinds of Estuary Wetland Vegetation
Lin Xianbiao1,2,He Shi2,Lin Xiao1,2,3,Zhang Wenlong1,2,Zhang Yongxun1,2,Zeng Congsheng1,2,3
(1.Institute of Geography,Fujian Normal University,Fuzhou 350007,China;
2.School of Geographical Sciences,Fujian Normal University,Fuzhou 350007,China;
3.Research Centre of Wetlands in Subtropical Region,Fuzhou 350007,China)
 全文: PDF(2105 KB)  
摘要:

研究不同波段位置和宽度对植被NDVI的影响,对于进一步认识NDVI指数具有重要的意义。采用ASD(Analytical Spectral Devices)地物光谱仪测定闽江河口互花米草(Spartina alterniflora)、秋茄(Kandelia candel)、芦苇(Phragmites australis)和短叶茳芏(Cyperus malaccensis)冠层光谱,利用ViewSpecPro和Oragin8.0软件对光谱数据进行分析和处理,探讨不同波段位置和波段宽度对河口湿地4种植被NDVI的影响。结果表明:①当红光波段固定,近红外波段以50 nm宽度移动时,4种湿地植被NDVI随近红外波段中心位置增加而迅速增加,之后趋于平稳,在925~1 050 nm出现一个小的谷值,互花米草和短叶茳芏的谷值要比其他两种植物更为明显;不同波段宽度影响表现为:除红边与970 nm附近区域对NDVI的影响较显著外,其他波段影响不显著;②当近红外波段固定,红光波段以10 nm宽度移动时,4种湿地植被NDVI随红光波段中心位置移动先略有增加或变化不大,然后迅速降低;不同波段宽度影响表现为:在650~700 nm波段宽度越宽,NDVI值越小,600~650 nm范围内波段宽度对NDVI的影响不大;③4种湿地植被红光波段宽度对NDVI的影响要大于近红外波段。

关键词: NDVI波段位置和宽度湿地植被闽江河口    
Abstract:

The canopy hyperspectral reflectance data of four typical kinds of wetland vegetation (Phragmites australis,Cyperus malaccensis,Kandelia candel and Spartina alterniflora) was acquired by Analytical Spectral Devices at the Shanyutan wetland of Minjiang river estuary in October 2011.The data was analyzed by adopting Viewspecpro and Oragin8.0 software to research the effects of band position and bandwidth on NDVI values.The following results showed that band positions and bandwidths of red band and near-infrared (NIR) band had significant different influences on NDVI values of four kinds of wetland vegetation relatively.
(1)When the red wavelengths fixed,NDVI of all vegetation were increased rapidly along with the increase of band center position,while NDVI appeared a small valley value in 925~1 050 nm.P.australis and S.alterniflora showed this valley value more obviously.Moreover,the different bandwidths influences on NDVI were that,in 725~825 nm,the lower NDVI values came out with the wider bandwidths; in 825~925 nm,the bandwidths had less influence on NDVI; in 925~1 100 nm,the narrower bandwidths got greater influences on NDVI.(2)When the NIR wavelengths fixed,the NDVI values of K.candel and S.alterniflora were increasing gradually with the increase of band center position in 600~680 nm,but P.australis and C.malaccensis did not showed this trend.In 680~700 nm,the NDVI of four kinds of wetland vegetation decreased rapidly.Bandwidths influences on NDVI were different with red wavelengths fixed condition.In 650~700 nm,the lager NDVI values came out with the narrower bandwidth; the bandwidths had less influences on NDVI in 600~650 nm.(3)The bandwidth of red band influences on NDVI values of four kinds of wetland vegetation is greater than the bandwidths of NIR band.

Key words: NDVI    Band position and bandwidth    Wetland vegetation    Minjiang River estuary
收稿日期: 2012-08-24 出版日期: 2013-08-14
:  TP 79  
基金资助:

国家基础科学人才培养基金(J1210067)。

通讯作者: 曾从盛(1954-),男,福建宁化人,研究员,博士生导师,主要从事湿地生态环境研究。E-mail:cszeng@fjnu.edu.cn。    
作者简介: 林贤彪(1988-),男,福建建宁人,硕士研究生,主要从事湿地生态环境与遥感相关研究。E-mail:linxianbiao2099@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林贤彪
何诗
林啸
章文龙
张永勋
曾从盛

引用本文:

林贤彪,何诗,林啸,章文龙,张永勋,曾从盛. 波段位置和宽度对河口湿地4种植被NDVI的影响[J]. 遥感技术与应用, 2013, 28(4): 714-720.

Lin Xianbiao,He Shi,Lin Xiao,Zhang Wenlong,Zhang Yongxun,Zeng Congsheng. Effects of Band Position and Bandwidth on NDVI Measurements of Four Kinds of Estuary Wetland Vegetation. Remote Sensing Technology and Application, 2013, 28(4): 714-720.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.4.714        http://www.rsta.ac.cn/CN/Y2013/V28/I4/714

[1]Meng Xianmin.Wetlands and Global Environmental Change[J].Scientia Geographica Sinica,1999,19(5):385-391.[孟宪民.湿地与全球环境变化[J].地理科学,1999,19(5):385-391.]

[2]Li Haiyan,Chen Zhanghe.Growth and Dissolved Organic Carbon Exudates from Roots of Three Wetland Plants[J].Journal of Tropical and Subtropical Botany,2011,19(6):536-542.[李海燕,陈章和.三种湿地植物的生长及根系溶解性有机碳分泌物研究[J].热带亚热带植物学报,2011,19(6):536-542.]

[3]Kokaly R F,Despain D G,Clark R N,et al.Mapping Vegetation in Yellowstone National Park Using Spectral Feature Analysis of AVIRIS Data[J].Remote Sensing of Environment,2003,84(3):437-456.

[4]Xu Xuegong.Study on Evaluation and Pre-warning of Ecological Environment in the Yellow River Delta[J].Acta Ecologica Sinica,1996,16(5):460-468.[许学工.黄河三角洲生态环境的评估和预警研究[J].生态学报,1996,16(5):460-468.]

[5]Wang Xianli,Hu Yuanman,Bu Rencang.Analysis of Wetland Landscape Changes in Liaohe Delta[J].Scientia Geographica Sinica,1996,16(3):260-264.[王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析[J].地理科学,1996,16(3):260-264.]

[6]Adam E,Mutanga O,Rugege D.Multispectral and Hyper Spectral Remote Sensing for Identification and Mapping of Wetland Vegetation a Review[J].Wetlands Ecology and Management,2010,18(3):281-296.

[7]Thenkabail P S,Smith R B,De Pauw E,et al.Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics [J].Remote Sensing of Environment,2000,71(2):158-182.

[8]Bi Xiaoli,Wang Hui,Ge Jianping.Wave-type Time Series Variation of the Correlation between NDVI and Climatic Factors[J].Chinese Journal of Applied Ecology,2005,16(2):284-288.[毕晓丽,王辉,葛剑平.植被归一化指数(NDVI)及气候因子相关起伏型时间序列变化分析[J].应用生态学报,2005,16(2):284-288.]

[9]Chang Shouzhi,Wang Zongming,Song Kaishan,et al.Monitoring Cropland Phenology in Sanjiang Plain based on NDVI Data[J].Remote Sensing Technology and Application,2011,26(1):82-88.[常守志,王宗明,宋开山,等.基于NDVI数据的三江平原农田物候监测[J].遥感技术与应用,2011,26(1):82-88.]

[10]Huete A R,Jackson R D.Soil and Atmosphere Infuences on the Spectra of Partial Canopies[J].Remote Sensing of Environment,1988,25(1):89-105.

[11]Middleton E M.Solar Zenith Angle Effects on Vegetation Indices in Tall Grass Prairie[J].Remote Sensing of Environment,1991,38(1):45-62.

[12]Qi J,Moran M S,Cabot F,et al.Normalization of Sun/View Angle Effects Using Spectral Albedo-based Vegetation Indices[J].Remote Sensing of Environment,1995,52(3):207-217.

[13]Sellers P J.Canopy Reflectance,Photosynthesis and Transpiration[J].International Journal of Remote Sensing,1985,6(8):1335-1372.

[14]Gao X,Huete A R,Ni W,et al.Optical Biophysical Relationships of Vegetation Spectra without Background Contam Ination[J].Remote Sensing of Environment,2000,74(3):609-620.

[15]Wang Fumin,Huang Jingfeng,Wang Xiuzhen,et al.Effects of Band Position and Bandwidth on NDVI Measurements of Rice at Different Growth Stages[J].Journal of Remote Sensing,2008,12(4):626-632.[王福民,黄敬峰,王秀珍,等.波段位置和宽度对不同生育期水稻NDVI影响研究[J].遥感学报,2008,12(4):626-632.]

[16]Wang Fumin,Huang Jingfeng,Tang Yanlin,et al.Estimation of Rice LAI by Using NDVI at Different Spectral Bandwidths[J].Chinese Journal of Applied Ecology,2007,18(11):2444-2450.[王福民,黄敬峰,唐延林,等.采用不同光谱波段宽度的归一化植被指数估算水稻叶面积指数[J].应用生态学报,2007,18(11):2444-2450.]

[17]Liu Jianqiu,Zeng Congsheng,Chen Ning.Research of Minjiang River Estuary Wetland[M].Beijing:Science Press,2006.[刘剑秋,曾从盛,陈宁.闽江河口湿地研究[M].北京:科学出版社,2006.]

[18]Zeng Congsheng,Wang Weiqi,Tong Chuan.Effects of Different Exogenous Electron Acceptors and Salt Import on Methane Production Potential of Estuarine Marsh Soil[J].Geographical Research,2008,27(6):1321-1330.[曾从盛,王维奇,仝川.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响[J].地理研究,2008,27(6):1321-1330.]

[19]Tong C,Wang W Q,Zeng C S,et al.Methane (CH4) Emission from a Tidal Marsh in the Min River Estuary,Southeast China[J].Journal of Environmental Science and Health,Part A,2010,45(4):506-516.

[20]Zhang W L,Zeng C S,Tong C,et al.Analysis of the Expanding Process of the Spartina Alterniflora Salt Marsh in Shanyutan Wetland Minjiang River Estuary by Remote Sensing[J].Procedia Environmental Sciences,2011,2(10):2472-2477.


 

[1] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[2] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[3] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[4] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[5] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[6] 杨涛,黄法融,李倩,白磊,李兰海. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6): 1132-1140.
[7] 李伟娜,韦玮,张怀清,刘华. 基于多角度高光谱数据的高寒沼泽湿地植被生物量估算[J]. 遥感技术与应用, 2017, 32(5): 809-817.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 周金霖,马明国,肖青,闻建光. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 2017, 32(5): 966-972.
[10] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[11] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[12] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[13] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
[14] 冯莉,李柳华,郭松,卢荻. HJ-1A NDVI与MODIS NDVI时间序列提取植被物候特征对比研究[J]. 遥感技术与应用, 2016, 31(6): 1158-1166.
[15] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.