Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (4): 784-792    DOI: 10.11873/j.issn.1004-0323.2015.4.0784
遥感应用     
1972~2010年西藏卡若拉冰川面积变化遥感研究
拉巴卓玛1,2,邱玉宝3,除多1,尼玛吉4
(1.西藏高原大气环境科学研究所,西藏 拉萨-850000;
2.成都信息工程大学资源环境学院,四川 成都-610225;
3.中国科学院遥感与数字地球研究所数字地球重点实验室,北京-100094;
4.西藏自治区气候中心,西藏 拉萨-850000)
Remote Sensing Analysis of Tibet Karuola Glacier Area Change from 1972 to 2010
Labazhuoma1,2,Qiu Yubao3,Chu Duo1,2,Nimaji4
(1.Tibet Institute of Plateau Atmospheric and Environmental Science Research,Lhasa 850001,China;
2.Chengdu University of Information Technology,Chengdu 610225,China;
3.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences,Beijing 100094;China;
4.Tibet Climate Center,Lhasa 850000,China)
 全文: PDF(2204 KB)  
摘要:

以Landsat陆地资源卫星和中国科学院寒区旱区环境与工程研究所80年代冰川矢量编目数据为数据源,利用GIS空间分析方法,提取并分析了1972~2010年西藏卡若拉冰川面积变化特征。结果表明,近38 a来卡若拉冰川有不同程度的退缩,1972~1978年和1999~2010年这两个时间段变化过程较明显,退缩速率较大,尤其以冰川末端和东南坡面积变化最明显。结合冰川最近的浪卡子气象站气候要素分析,得出区域气温和降水都有升高趋势,但是气温的升高特别是冷季气温上升导致的冰雪消融超过了降水量增加的补给,是西藏卡若拉冰川退缩的主要原因。

关键词: 西藏卡若拉冰川遥感    
Abstract:

In this study,The Tibet Karuola glacier area change has been analysed from 1972~2010 by GIS spatial analysis method based on Landsat land resources satellite.The results showed that Tibet Karuola glaciers have vetreating retreat nearly 38 years.The glacier area changes is obviously in 1972~1978 and 1999~2010.In particular,the most obvious of glacier area is thange in glacier terminus and southeast slope area,combined with analysis of climatic factors of Langkazi meteorological station showed that the regional temperature and precipitation have increased,especially cold season temperature rise is the main reason that lead to glacier retreat.

Key words: Tibet Karuola    Glacier    Remote sensing
收稿日期: 2014-04-14 出版日期: 2015-09-22
:  TP 79  
基金资助:

公益性行业(气象)科研专项(GYHY201206040),国家自然科学基金项目(41165003),西藏自治区气象局局设项目资助。

通讯作者: 邱玉宝(1978-),男,江西兴国人,副研究员,博士,主要从事被动微波遥感研究。Email:qiuyb@radi.ac.cn。    
作者简介: 拉巴卓玛(1984-),女,西藏拉萨人,工程师,硕士研究生,主要从事遥感应用研究。Email:lhakdron@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
拉巴卓玛
邱玉宝
除多
尼玛吉

引用本文:

拉巴卓玛,邱玉宝,除多,尼玛吉. 1972~2010年西藏卡若拉冰川面积变化遥感研究[J]. 遥感技术与应用, 2015, 30(4): 784-792.

Labazhuoma,Qiu Yubao,Chu Duo,Nimaji. Remote Sensing Analysis of Tibet Karuola Glacier Area Change from 1972 to 2010. Remote Sensing Technology and Application, 2015, 30(4): 784-792.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.4.0784        http://www.rsta.ac.cn/CN/Y2015/V30/I4/784

[1]Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013:The Physical Science Basis[R].2013.

[2]Qin Dahe.Glaciers and Ecological Environment of the Tibetan Plateau[M].Beijing:China Tibetology Publishing House,1999.[秦大河,青藏高原的冰川与生态环境[M].北京:中国藏学出版社,1999.]

[3]Jing Zhefan,Zhou Zaiming,Liu Li.Progress of the Reaserch on Glacier Velocities in China[J].Journal of Glaciology and Geocryology,2010,32(4):749-754.[井哲帆,周在明,刘力.中国冰川运动速度研究进展[J].冰川冻土,2010,32(4):749-754.]

[4]The Qinghai-Tibet Plateau Comprehensive Scientific Expedition of Chinese Academy of Sciences.Tibet Glacier[M].Beijing:Science Press,1986.[中国科学院青藏高原综合科学考察队,西藏冰川[M].北京:科学出版社,1986.]

[5]Yao Tandong,Ageta Y,Ohata T,et al.Preliminary Results from China-Japan Glaciological Expedition in Tibet Plateau,1989[J].Journal of Glaciology and Geocryology,1991,13(1):1-8.[姚檀栋,上田丰,大田哲夫,等.1989年中日青藏高原冰川联合考察研究[J].冰川冻土,1991,13(1):1-8.]

[6]Zhong Zhenwei,Ye Qinghua.Integrated Method of Glacial Information Extraction Around the Mount Naimonani[J].Journal of Glaciology and Geocryology,2009,31(4):717-724.[仲振维,叶庆华.纳木纳尼峰地区冰川信息的综合提取方法[J].冰川冻土,2009,31(4):717-724.]

[7]Zhang Minghua.Extracting the Temperate Glacier Information in the Mount Namjagbarwa,Tibet Autonomous Region,based on ETM+ Image[J].Journal of Glaciology and Geocryology,2005,27(4):226-232.[张明华.基于ETM+ 影像的西藏南迦巴瓦峰地区海洋性冰川信息提取[J].冰川冻土,2005,27(4):226-232.]

[8]Pu Jianchen,Yao Tandong,Wang Minglian.et al.Fluctuations of the Glaciers on the Qinghai-Tibetan Plateau during the Past Century[J].Journal of Glaciology and Geocryology,2004,26(5):517-522.[蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原冰川的进退变化[J].冰川冻土,2004,26(5):517-522.]

[9]Liao Liping,Zhu Yingyan,Yang Zhiquan,et al.Advanced Retreat Fluctuation of the Ghulkin Glacier along the Kara Koram Highway over Hundred Years[J].Journal of Glaciology and Geocryology,2013,35(6):1391-1399.[廖丽萍,朱颖彦,杨志全,等.中国巴基斯坦喀喇昆仑公路Ghulkin冰川百年进退变化[J].冰川冻土,2013,35(6):1391-1399.]

[10]Zhu Wanwan,Shangguan Donghui,Guo Wanqin,et al.Glaciers in some Representative Basins in the Middle of the Tianshan Mountains:Change and Response to Climate Change[J].Journal of Glaciology and Geocryology,2014,36(6):1376-1384.[朱弯弯,上官冬辉,郭万钦,等.天山中部典型流域冰川变化及对气候的响应[J].冰川冻土,2014,36(6):1376-1384.]

[11]Ding Guangxi,Chen Caiping,Xie Changwei.et al.Study of the Icetongue Ablation Features of a Large Glacier in the Tianshan Mountains[J].Journal of Glaciology and Geocryology,2014,36(1):20-29.[丁光熙,陈彩萍,谢昌卫,等.西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析[J].冰川冻土,2014,36(1):20-29.]

[12]Nie Ning,Zhang Zhijie,Zhang Wanchang,et al.Analysis of theCharacteristics of the Glacier System and Typical Glacier Change based on Remote Sensing in the Yarlung Zangbo River Basin during the Past 30 Years[J].Journal of Glaciology and Geocryology,2013,35(3):541-552.[聂宁,张智杰,张万昌,等.近30a来雅鲁藏布江流域冰川系统特征遥感研究及典型冰川变化分析[J].冰川冻土,2013,35(3):541-552.]

[13]Xiang Lingzhi,Liu Zhihong,Liu Jinbao,et al.Variation of Glaciers and its Response to Climate Change in Bomi County of Tibet Autonomous Region in 1980~2010[J].Journal of Glaciology and Geocryology,2013,35(3):593-600.[向灵芝,刘志红,柳锦宝,等.1980~2010年西藏波密县冰川变化及其对气候变化的响应[J].冰川冻土,2013,35(3):593-600.]

[14]Ji Peng,Guo Huadong,Zhang Lu.Landsat based Dynamic Area Change of the Glaciers to the North of the Guozhacuo Lake,1991-2009[J].Remote Sensing Technology and Application,2011,26(2):202-208.[纪鹏,郭华东,张露.基于Landsat数据的郭扎错北面冰川近20年来面积动态变化遥感研究[J].遥感技术与应用,2011,26(2):202-208.]

[15]〖KG*6/7〗Li Zhiguo,Yao Tandong,Ye Qinghua.Monitoring Glacial Variations based on Remote Sensing in the Luozha Region,Eastern Himalayas,1980~2007[J].Geographical Research,2011,30(5):939-951.[李治国,姚檀栋,叶庆华.1980~2007年喜马拉雅东段洛扎地区冰川变化遥感监测[J].地理研究,2011,30(5):939-951.]

[16]Wang Gaofeng,Zhang Tingbin,Zhang Jianping.et al.Comparative Study of Glaciers Information Extraction Method based on Remote Sensing Image[J].Geospatial Information,2010,3(43):43-46.[王高峰,张延斌,张建平,等.遥感影像的冰川信息提取方法对比[J].地理空间信息,2010,3(43):43-46.]

[17]Lu Anxin,Yao Tandong,Liu Shiyin,et al.Glacier Change in the Geladandong Area of the Tibetan Plateau Monitored by Remote Sensing[J].Journal of Glaciology and Geocryology,2002,24(5):559-562.[鲁安新,姚檀栋,刘时银,等.青藏高原各拉丹东地区冰川变化的遥感监测[J].冰川冻土,2002,24(5):559-562.]

[18]Zhong Zhenwei,Ye Qinghua.Integrated Method of Glacial Information Extraction Around the Mount Naimonanyi[J].Journal of Glaciology and Geocryology,2009,31(4):717-724.[仲振维,叶庆华.纳木那尼峰地区冰川信息的综合提取方法[J].冰川冻土,2009,31(4):717-724.]

[19]Yao Tandong,Yao Zhijun.Impacts of Glacial Reretreat on Runoff on Tibetan Plateau[J].Chinese Journal of Nature,2010,32(1):4-8.[姚檀栋,姚治君.青藏高原冰川退缩对河流径流的影像[J].中国自然杂志,2010,32(1):4-8.]

[20]Li Zhiguo,Yao Tandong,Ye Qinghua,et al.Glaciers in the Upstream Manla Reservoir in the Nianchu River Basin,Tibet Shrinkage and Impact[J].Journal of Glaciology and Geocryology,2010,32(4):650-658.[李治国,姚檀栋,叶庆华,等.西藏年楚河满拉水库上游冰川变化及其影响[J].冰川冻土,2010,32(4):650-658.]

[21]Pu Jianchen,Yao Tandong,Wang Ninglian,et al.Fluctuations of the Glaciers on the Qinghai-Tibetan Plateau during the Past Century[J].Journal of Glaciology and Geocryology,2004,26(5):517-522.[蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原的冰川进退情况[J].冰川冻土,2004,26(5):517-522.]

[22]Fan Qishun,Sha Zhanjiang,Cao Guangchao,et al.Assessment of the Influence of Glacial Resources on Climatic Changes in Qinghai Plateau[J].Journal of Arid Land Resources and Environment,2005,19(5):56-60.[燓启顺,沙占江,曹广超,等.气候变化对青海高原冰川变化的影像评价[J].干旱区资源与环境,2005,19(5):56-60.]

[23]Su Zhen,Liu Zongxiang,Wang Wenti,et al.Glacier Fluctuations Respounding to Climate Change and Forecast of ITS Tendency over the Qinghai-Tibet Plateau[J].Advance in Earth Sciences,1999,14(6):607-612.[苏珍,刘宗香,王文悌.青藏高原的冰川对气候变化的响应及趋势预测[J].地球科学进展,1999,14(6):607-612.]

[24]Gao Xiaoqing,Tang Maocang,Feng Song,et al.Glacier Discussion the Relationship between Glacial Fluctuation and Climate Change[J].Plateau Meteorology,1999,14(6):9-16.[高晓清,汤懋苍,冯松.冰川变化与气候变化关系的若干探讨[J].高原气象,1999,14(6):9-16.]

[25]Wei Zhigang,Huang Ronghui,Dong Wenjie.Interannual and Interdecadal Variations of Air Temperature and Precipitation over the Tibetan Plateau[J].Chinese Journal of Atmospheric Sciences,2003,27(2):157-170.[韦志刚,黄荣辉,董文杰.青藏高原气温和降水的年际和年代际变化[J].大气科学,2003,27(2):157-170.]

[26]Ma Xiaobo,Li Dongliang.Analysis on Air Temperature and Its Abrupt Change over Qinghai-Xizang Plateau in Modern Age[J].Plateau Meteorology,2003,22(5):507-512.[马晓波,李栋梁.青藏高原近代气温变化趋势及突变分析[J].高原气象,2003,22(5):507-512.]

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.