Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (1): 109-118    DOI: 10.11873/j.issn.1004-0323.2016.1.0109
遥感应用     
非降水条件下微波辐射计海面风遥感产品性能分析
孙强1,2,吕达仁1
 (1.中国科学院大气物理研究所中层大气与全球环境探测重点实验室,北京100029;
2.中国科学院大学,北京100049)
Analysis on the Performance of Microwave Radiometer on Monitoring Sea Surface Wind under Non\|precipitation Conditions
Sun Qiang1,2,Lü Daren1
(1.Key Laboratory of Middle Atmosphere and Global Environment Observation,Institute
of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(4157 KB)  
摘要:

通过对5种微波辐射计SSM/I、SSM/IS、TMI、AMSR\|E和WINDSAT以及2种微波散射计ASCAT和QUIKSCAT多年的海面风产品同浮标同步的实测资料进行数据匹配处理,再对匹配后的数据进行数据分析和统计。研究结果表明:微波辐射计遥感海面风的性能在1 m/s左右,可以满足绝大多数应用的需求。微波辐射计的低频海面风产品性能优于中频产品,但是中频数据地面分辨率高,建议在近海应用中使用中频产品,在大洋应用中使用低频产品。就不同微波辐射计而言,AMSR\|E和WINDSAT性能较优,SSM/I和SSM/IS性能较差,TMI则处于中等水平。微波辐射计测量风速的性能与微波散射计相比处于同一水平,但在高风速段微波辐射计有一定优势。微波辐射计中仅全极化微波辐射计WINDSAT具有测量海面风向的能力,在低风速段,WINDSAT测量海面风向的性能远远不及微波散射计,只有风速超过6 m/s时,WINDSAT提供的海面风向数据才能符合应用的需求。当风速超过8 m/s后,WINDSAT遥感海面风向的能力就和微波散射计基本一致。在此基础上,提出了强风条件下深入研究的必要性,并对浮标测风存在的问题做出了初步的分析并指出了改进的方向。

关键词: 微波辐射计海面风数据验证    
Abstract:

In this study,the sea surface wind speed and wind direction data from five microwave radiometers including SSM/I,SSM/IS,TMI,AMSR\|E and WINDSAT,and two microwave scatterometers including ASCAT and QUIKSCAT,are compared with collocated buoy data.The results shows that the accuracy of wind speed from microwave radiometers is about 1 m/s,which meet requirements of most applications.Low frequency products of microwave radiometers are more accurate than the middle frequency products.However,the middle frequency products are recommended to be used in offshore applications for its higher horizontal resolution,and low frequency products are recommended for applications in the open ocean.In the five microwave radiometers,AMSR\|E and WINDSAT give better wind speed products than TMI,while TMI preforms better than SSM/I and SSM/IS.The microwave scatterometers are slightly better at monitoring sea surface wind speed than the microwave radiometers,but the microwave radiometers are better at monitoring larger wind speed.While WINDSAT is the only microwave radiometer able to get wind direction information,microwave radiometers perform much better on monitoring sea surface wind direction than WINDSAT.Only when the wind speed exceeds 6 m/s,sea surface wind data provided by WINDSAT could meet the requirements of applications.And when wind speed is larger than 8 m/s,wind direction from WINDSAT shows similar accuracy with that from microwave scatterometers.On the basis of these results,this study pointed out the needs of improvement of wind remote sensing under high wind conditions.Meanwhile,the accuracy of wind data from buoy is also preliminarily analyzed and based on the analysis,directions of improvements of buoys are proposed.

Key words: Microwave radiometer    Sea surface wind    Data verification
收稿日期: 2014-11-23 出版日期: 2016-04-05
:  TP 722.6  
基金资助:

中国科学院对外合作重点项目(GJHZ1207)。

通讯作者: 吕达仁(1940-),男,上海人,研究员,主要从事大气物理学研究。Email:ludr@mail.iap.ac.cn。    
作者简介: 孙强(1975-),男,福建厦门人,博士研究生,主要从事海洋遥感及大气遥感研究。Email:franklin_sun@tom.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙强
吕达仁

引用本文:

孙强,吕达仁. 非降水条件下微波辐射计海面风遥感产品性能分析[J]. 遥感技术与应用, 2016, 31(1): 109-118.

Sun Qiang,Lü Daren. Analysis on the Performance of Microwave Radiometer on Monitoring Sea Surface Wind under Non\|precipitation Conditions. Remote Sensing Technology and Application, 2016, 31(1): 109-118.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.1.0109        http://www.rsta.ac.cn/CN/Y2016/V31/I1/109

[1]Naderi F,Freilich M H,Long D G.Spaceborne Radar Measurement of Wind Velocity over the Ocean——An Overview of the NSCAT Scatterometer System[J].Proceedings of the IEEE,1991,79(6):850-866.

[2]Lin Minsen,Zou Juhong,Xie Xuetong,et al.HY-2A Microwave Scatterometer Wind Retrieval Algorithm[J].Engineering Sciences,2013,15(7):68-74.[林明森,邹巨洪,解学通,等.HY-2A微波散射计风场反演算法[J].中国工程科学,2013,15(7):68-74.]

[3]Wentz F J.A Well Calibrated Ocean Algorithm for Special Sensor Microwave Imager[J].Journal of Geophysical Research,1997,102,(C4):8703-8718.

[4]Wang Zhenzhan.A Model for Inversing Sea Surface Wind Speeds by Using SSM/I 19.35 GHz Vertical and Horizontal Brightness Temperatures[J].Ocean Technology,2003,22(2):1-6.[王振占.用19.35GHz星载微波辐射计(SSM/I)亮温反演海面风速[J].海洋技术,2003,22(2):1-6.]

[5]Witter D L,Chelton D B.A Geosat Altimeter Windspeed Algorithm and a Method for Altimeter Windspeed Algorithm Development[J].Journal of Geophysical Research,1998,96(C5):8853-8860.

[6]Jiang Zhuhui,Huang Sixun,Liu Gang,et al.Research on the Development of Surface Wind Speed Retrieval from Satellite Radar Altimete[J].Marine Science Bulletin,2011,30(5):588-594.[姜祝辉,黄思训,刘刚,等.星载雷达高度计反演海面风速进展[J].海洋通报,2011,30(5):588-594.]

[7]Portabella M.ERS-2 SAR Wind Field Retrievals from Satellite Radar Systems [D].Barcelona:University of Barcelona,2002.

[8]Yang Jinsong,Huang Weigen,Zhou Changbao,et al.Coastal Ocean Surfaee Wind Retrieval from SAR Imagery[J].Journal of Remote Sensing,2001,5(1):13-16.[杨劲松,黄韦艮,周长宝,等.合成孔径雷达图像的近岸海面风场反演[J].遥感学报,2001,5(1):13-16.]

[9]Komjathy A,Zavorotny V U,Axelrad P,et al.GPS Signal Scattering from Sea Surface:Wind Speed Retrieval Using Experimental Data and Theoretical Model[J].Remote Sensing of Environment,2000,73(2):162-174.

[10]Chen Shiping,Fang Zongyi,Lin Minseng.Remote Sensing of Atmosphere and Oceanography Using Global Navagation and Positioning Systems[J].Remote Sensing Technology and Application,2005,20(1):30-37.[陈世平,方宗义,林明森.利用全球导航定位系统进行大气和海洋遥感[J].遥感技术与应用,2005,20(1):30-37.]

[11]Wentz F J,Peteherych S,Thomas L A.A Model Function for Ocean Radar Cross-sections at 14.6 GHz[J].Journal of Geophysical Research,1984,89(NC3):3689-3704.

[12]Attema E.The Active Microwave Instrument Onboard the ERS-1 Satellite[J].Proceedings of the IEEE,1991,79(6):791-799.

[13]Wentz F J.Measurement of Oceanic Wind Vector Using Satellite Microwave Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):960-972.

[14]Meissner T,Wentz F J.An Updated Analysis of the Ocean Surface Wind Direction Signal in Passive Microwave Brightness Temperatures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1230-1240.

[15]Wentz F J,Meissner T.AMSR Ocean Algorithm Theoretical Basis Document,Version 2[EB/OL].http://images.remss.com/papers/rsstech/2000_121599A-1_Wentz_AMSR_Ocean_Algorithm_ATBD_Version2.pdf,2000,2013.

[16]Wentz F J,Meissner T,Smith D K.Assessment of the initial release of WindSat wind retrievals[EB/OL].http://images.remss.com/papers/rsstech/2005_010605_Wentz_Windsat_Assessment.pdf,2005,2013.

[17]Wang Zhenzhan,Jiang Jingshan,Liu Jingyi,et al.Critica1 Technique and Scientific Topic on Fully Polarized Microwave Radiometer Remote Sensing Sea Surface Wind Vector[J].Engineering Sciences,2008,10(6):76-86.[王振占,姜景山,刘璟怡,等.全极化微波辐射计遥感海面风场的关键技术和科学问题[J].中国工程科学,2008,10(6):76-86.][18]Zhang Yong,Lü Daren.Simulation os Sen Surface Wind Direction Retrieval Using Spaceborne Fully Polarimetric Microwave Radiometer[J].Remote Sensing Technology and Application,2014,29(3):386-393.[张勇,吕达仁.星载全极化微波辐射计海面风向反演仿真研究[J].遥感技术与应用,2014,29(3):386-393.]

[19]Gilhousen D B.A Field Evaluation of NDBC Moored Buoy Winds[J].Journal of Atmospheric and Oceanic Technology,1987,4(1):94-104.

[20]Freitag H P,OHaleck M,Thomas G C,et al.Calibration Procedures and Instrumental Accuracies for ATLAS Wind Measurements[EB/OL].http://www.pmel.noaa.gov/pubs/PDF/frei2339/frei2339.pdf,2001,2013.

[1] 马丽娜,李青,姜苏麟. 地基微波辐射计的亮温观测与模拟数据的一致性分析和云检测[J]. 遥感技术与应用, 2018, 33(1): 68-77.
[2] 陈坤堂,董晓龙,徐星欧,郎姝燕. 微波散射计反演海面风场的神经网络方法研究[J]. 遥感技术与应用, 2017, 32(4): 683-690.
[3] 韩冰,许遐祯,刘焕彬,张康宇,郭乔影,黄敬峰,王秀珍. 同极化Radarsat-2数据的海面风速反演研究[J]. 遥感技术与应用, 2017, 32(3): 419-426.
[4] 王亚辉,王振占,张升伟. 全极化微波辐射计扫描目标成像方法研究[J]. 遥感技术与应用, 2017, 32(3): 483-489.
[5] 王振占,董帅,殷晓斌,陆浩,李彬. 有源微波冷噪声源的原理及其应用分析[J]. 遥感技术与应用, 2017, 32(2): 247-254.
[6] 王兆徽,季轩梁,廖菲,宋清涛. AMSR-E的C/X双波段垂直极化亮温反演海面盐度[J]. 遥感技术与应用, 2017, 32(2): 356-362.
[7] 林溢园,邹巨洪,林明森,何原荣. 多源星载微波散射计海面风场信息融合研究[J]. 遥感技术与应用, 2017, 32(1): 126-132.
[8] 王迎强,严卫,严明. 基于星载微波辐射计的海面风场对海表盐度反演影响研究[J]. 遥感技术与应用, 2016, 31(6): 1037-1044.
[9] 张康宇,王苏娟,郭乔影,李正泉,韩冰,王秀珍,黄敬峰. 基于长时间序列ASAR数据的近海风场反演[J]. 遥感技术与应用, 2016, 31(6): 1059-1068.
[10] 张瑞洁,杨晓城,阎敬业,吴季. FPIR 实时快视成像方法[J]. 遥感技术与应用, 2016, 31(3): 530-536.
[11] 张涛,赵少杰,张立新,张钟军,蒋玲梅,柴琳娜. 车载多频率微波辐射计与观测数据应用[J]. 遥感技术与应用, 2015, 30(5): 1012-1020.
[12] 王振占,谢莹,陆浩,董帅,李彬. 23.8 GHz数字相关型全极化微波辐射计的定标及其影响分析[J]. 遥感技术与应用, 2015, 30(4): 744-756.
[13] 陈思,刘浩,吴季,牛立杰. 基于Simulink的干涉式微波辐射计系统仿真研究[J]. 遥感技术与应用, 2015, 30(4): 757-766.
[14] 谷松岩,郭杨,游然. FY-3A/MWHS辐射传递及冷空偏差修正[J]. 遥感技术与应用, 2015, 30(2): 251-257.
[15] 窦芳丽,安大伟,李嘉睿. 基于FY-3B微波成像仪的海面风速反演[J]. 遥感技术与应用, 2014, 29(6): 984-992.