Please wait a minute...
img

官方微信

遥感技术与应用
数据与图像处理     
基于面向对象的东营市城乡建设用地信息提取
王苏芸1,2,孙中昶2,3,郭华东2,3,申维1
(1.中国地质大学(北京)地球科学与资源学院,北京100083;
2.中国科学院遥感与数字地球研究所 中国科学院数字地球重点实验室,北京100094;
3.海南省地球观测重点实验室,海南 三亚572000)
Extracting Built\|up Areas from TerraSAR-X Data Using Object-oriented Classification Method
Wang Suyun1,2,Sun Zhongchang2,3,Guo Huadong2,3,Shen Wei1
(1.School of Earth Sciences and Resource,China University of Geosciences(Beijing),
Beijing 100083,China;2.Key Laboratory of Digital Earth Science,Institute of Remote Sensing
and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;
3.Key Laboratory of Earth Observation of Hainan Province,Sanya 572000,China)
 全文: PDF(14907 KB)  
摘要:
基于面向对象和区域增长的方法,开展东营市城乡建设用地提取。通过分析局部斑点统计特征计算真实的纹理影像,并对强度数据进行多尺度分割,结合纹理影像信息和局部后向散射强度信息,应用面向对象和区域生长方法提取城乡建设用地。利用Google Earth提供的影像进行对照验证,生成混淆矩阵来评价城乡建设用地提取结果。在东营市的高分辨率TerraSAR\|X数据的实验结果验证了本方法的有效性,提取精度达92.89%。
关键词: TerraSAR-X城乡建设用地影像分割面向对象区域生长    
Abstract: Urban sprawl stands for one of the most dynamic process in the context of global land use changes.Currently developing countries are going through the tide of urban expansion,represented by China and India.The constantly increasing loss of land resources due to growing settlements comes along with various ecological and socioeconomic challenges such as air pollutant,water contamination,urban heat island effect and urban waterlog disaster.In order to prevent these negative consequences,effective methods and strategies for a sustainable development of urban planning is the availability of accurate and up\|to\|date geo\|data on the location,shape,and dynamics of built\|up areas.Based on single\|polarized TerraSAR\|X,the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region\|growing algorithm,which takes the intensity of backscatter and shape\|related properties into account.The object\|oriented procedure consists of three main steps:firstly,the analysis of the local speckle behavior in the SAR intensity data,leading to the generation of a texture image;secondly,a segmentation based on the intensity image;thirdly,the classification of each segment using the derived texture file and intensity information in order to identify and extract build\|up areas.In our research,the distribution of BAs in Dongying City is derived from single\|polarized TSX SM image (acquired on 17th June 2013)with average ground resolution of 3m using our proposed approach.By cross\|validating the random selected validation points with geo\|referenced field sites,Google Earth high\|resolution imagery,confusion matrices with statistical indicators are calculated and used for assessing the classification results.The result of kappa coefficient is 0.85,OA coefficient is 92.89%.We have shown that connect texture information with the analysis of the local speckle divergence,combining texture and intensity of construction extraction is feasible,efficient and rapid.
Key words: TerraSAR\    X;Built\    up area (BA);Segmentation;Object\    oriented classification;Region\    growing algorithm
收稿日期: 2016-07-18 出版日期: 2017-09-13
:  TP 75  
基金资助:
作者简介: 王苏芸(1991-),女,四川自贡人,硕士研究生,主要从事极化SAR定标及SAR图像处理研究。Email:wsy@cugb.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王苏芸
孙中昶
郭华东
申维

引用本文:

王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2017.4.0780.

Wang Suyun,Sun Zhongchang,Guo Huadong,Shen Wei. Extracting Built\|up Areas from TerraSAR-X Data Using Object-oriented Classification Method. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2017.4.0780.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.4.0780        http://www.rsta.ac.cn/CN/Y2017/V32/I4/780

[1]Li Jiaxiang,Chen Panqin,Ma Zhuguo,et al.Reginal Research:A Main Approach to Understand the Global Environmental Change[J].Advances in Earth Science,2006,21(4):441-450.[李家洋,陈泮勤,马柱国,等.区研究:全球变化研究的重要途径[J].地球科学进展,2006,21(4):441-450.]
[2]Zhang Bo,Wang Chao,Zhang Hong,et al.A Review on Building Extraction and Reconstruction from SAR Image[J].Remote Sensing Technology and Application,2012,27(3):496-503.[张波,王超,张红,等.SAR影像建筑物提取与高度反演研究综述[J].遥感技术与应用,2012,27(3):496-503.]
[3]Guo H D,Yang H N,Sun Z C,et al.Synergistic Use of Optical and PolSAR Imagery for Urban Impervious Surface Estimation[J].Photo Grammetric Engineering and Remote Sensing,2014,80(1):91-102.
[4]Xu Y,Ma P F,Lin H,et al.Fusion of World-view2 Stereo and TerraSAR-X Images for 3D Building Extraction in Urban Areas[C]//ICUC9 - 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment,Jun.2015.
[5]Huang X,Yuan W,Li J,et al.A New Building Extraction Postprocessing Framework for High-spatial-resolution Remot Sensing Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(2)654-668.
[6]Ivan T,Dirk T,Thomas B.A Building Extraction Approach for Airborne Laser Scanner Data Utilizing the Object based Image Analysis Paradigm[J].International Journal of Applied Earth Observation and Geoinformation,2016,58:137-148.
[7]Fadi D,Abdelmalik M,Youssef E M,et al.Building Detection from Orthophotos Using a Machine Learning Approach:An Empirical Study on Image Segmentation and Descriptors[J].Expert Systems with Applications,2016,58:130-142.
[8]Wang Yanhong,Cheng Bo,You Shucheng,et al.Extraction of Building Areas from High-resolution SAR Images based on Advanced Variogram Method[J].Remote Sensing Information,2014,29(2):3-8.[王艳红,程博,尤淑撑,等.基于改进变差函数的高分辨率SAR图像建筑区提取[J].遥感信息,2014,29(2): 3-8.]
[9]Ban Y F,Yousif O A.Multitemporal Spaceborne SAR Data for Urban Change Detection in China[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(4):1087-1094.
[10]Borhani M,Ghassemian H.Hyperspectral Image Classification based on Spectral-spatial Features Using Probabilistic SVM and Locally Weighted Markov Random Fields[J].IEEE Transactions on Geoscience and Remote Sensing,2014,7:1-4.
[11]Ferro A,Brunner D,Bruzzone L.Automatic Detection and Reconstruction of Building Radar Footprints from Single VHR SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing,2013,10:935-952.
[12]Sportouche H,Tupin F,Denise L.Extraction and Three-dimensional Reconstruction of Isolated Buildings in Urban Scenes from High-resolution Optical and SAR Spaceborne Images[J].IEEE Transactions on Geoscience and Remote Sensing,2011,11:3932-3946.
[13]Marconcini M,Metz A,Esch T,et al.Global Urban Growth Monitoring by Means of SAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,2014,7:1477-1480.[14]Taubenbock H,Esch T,Felbier A,et al.Monitoring Urbanization in Mega Cities from Space[J].Remote Sensing of Environment,2012,11(7):162-176.
[15]Guo Huadong.Radar Earth Observation on Theory and Applications[M].Beijing:Science Press,2000.[郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.]
[16]Lee S,Thomas L A,Wang Y T.On Polarimetric SAR Speckle Filtering[J].IEEE Transactions on Geoscience and Remote Sensing,2012:111-114.
[17]Grandi G D,Lee J S,Schuler D,et al.Texture and Speckle Statistics in Polarimetric SAR Synthesized Images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,9:2070-2088.
[18]Farage G,Foucher S,Benie G B.Comparison of PoLSAR Speckle Filtering Techniques[C]//Proc.IGARSS,2006:1760-1763.
[19]Wu Quan,Pei Zhiyuan,Guo Lin,et al.Two Kinds of Remote Sensing Application Research on Evaluation Method of Classification Accuracy[R].2011.[吴全,裴志远,郭琳,等.两种遥感分类精度评价方法应用研究[R].中国农业工程学会2011年学术年会论文集,2011.]

 
[1] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[2] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[3] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[4] 王濮,邢艳秋,王成,习晓环,骆社周. 机载LiDAR数据提取山区道路方法研究[J]. 遥感技术与应用, 2017, 32(5): 851-857.
[5] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[6] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[7] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[8] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[9] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[10] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[11] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.
[12] 王娟,廖静娟,沈国状,许涛. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.
[13] 王嘉芃,刘婷,俞志强,胡潭高,张登荣,寻丹丹,王冬海. 基于COSMOGSkyMed和SPOTG5的城镇洪水淹没信息快速提取研究[J]. 遥感技术与应用, 2016, 31(3): 564-571.
[14] 宋亚婷,江东,黄耀欢,万华伟. 基于面向对象方法的露天煤矿用地类型提取优先级分析[J]. 遥感技术与应用, 2016, 31(3): 572-579.
[15] 满卫东,李春景,王宗明,贾明明,毛德华,刘明月,路春燕. 基于面向对象分类方法的乌苏里江流域中俄跨境区域湿地景观动态研究[J]. 遥感技术与应用, 2016, 31(2): 378-387.