Please wait a minute...
img

官方微信

遥感技术与应用
模型与反演     
像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果
白瑜1,2,孟治国 1,赵凯2,3,郑兴明 2,3,姜涛2,3
(1.吉林大学地球探测科学与技术学院,吉林 长春 130026;
2.中国科学院东北地理与农业生态研究所,吉林 长春 130102;
3.中国科学院长春净月潭遥感试验站,吉林 长春 130102)
Pixel-scalesoil Moisture Monitoring Network and Its Preliminary Validation of L-band Soil Moisture Products
Bai Yu1,2,Meng Zhiguo1,Zhao Kai2,3,Zheng Xingming2,3,Jiang Tao2,3
(1.Faculty of GeoExploration Science and Technology,Jilin University,Changchun 130026,China;
2.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;3.Changchun Jingyuetan Remote Sensing Experiment Station,Chinese Academy of Sciences,Changchun 130102,China)
 全文: PDF(6324 KB)  
摘要:
土壤水分是作物生长、地—气水热交换及全球水循环过程中的关键变量,对于旱情监测、水文陆面过程及气候变化的研究具有重要的意义。被动微波遥感凭借对于土壤水分的敏感性已经成为监测土壤水分的主要手段。研究中针对吉林省农田下垫面,利用土壤水分传感器网络监测数据,开展了SMAP(Soil Moisture and Active and Passive)和SMOS(Soil Moisture and Ocean Salinity)被动微波土壤水分产品的真实性检验研究,得出了以下结论:①与实测数据相比较,SMOS L3(升降轨)和SMAP L3被动微波土壤水分产品存在低估现象,伴随降雨事件会出现高于实测土壤水分的情况;两种被动微波土壤水分产品的无偏均方根误差(unRMSE)都大于0.07 m3/m3,但SMAP L3被动微波土壤水分产品数据的ubRMSE略低,为0.078 m3/m3;②由于L波段的感应深度要浅于传感器的探测深度5 cm,降雨后土壤表层的变干现象导致土壤水分的垂直不均匀性,这是SMOS和SMAP被动微波土壤水分产品低估土壤水分的原因之一;③SMOS与SMAP亮温分布范围对比结果表明:由于电磁射频干扰(RFI)的影响,RFI对于SMOS的影响更为严重,这或许是SMOS土壤水分产品的RMSE高于SMAP被动微波土壤水分产品的原因。
关键词: 土壤水分微波遥感SMAPSMOS验证    
Abstract: Soil moisture is a key variable in the process of crop growth,ground-air water heat exchange and global water cycle,which plays an important role in drought monitoring,hydrological land surface processes and climate change.Passive microwave remote sensing has become the main means of monitoring soil moisture with the sensitivity to soil moisture.In this study,the authenticity test of SMAP(Soil Moisture and Active and Passive) and SMOS(Soil Moisture and Ocean Salinity)passive microwave soil moisture products using the soil moisture sensor network monitoring data carried out against the underlying surface of farmlands in Jilin Province was carried out.The following conclusions were obtained:(1)Compared with the in situ measured data,SMOS L3(ascending and descending overpasses) and SMAP L3 passive microwave soil moisture products generally underestimated the ground data,but With the occurrence of rainfall events,there will be the phenomenon which is the value of soil moisture products is higher than the in situ data; although the unbiased root mean square error (unRMSE) of the two soil moisture products was greater than 0.07 m3/m3,the unRMSE of SMAP passive microwave soil moisture product data which was 0.078 m3/m3 was slightly lower;(2)Since the depth of induction of the L-band is lighter than the depth of detection of the sensor(5cm),and the dryness of the soil surface after rainfall causes the vertical inhomogeneity of soil moisture,which is one of the reasons why SMOS and SMAP passive microwave soil moisture products underestimate soil moisture; (3)SMOS has a higher value than the range of SMAP brightness temperature,which may be caused by radio frequency interference (RFI),which makes the error of soil moisture Retrieval and affects the validation accuracy.The comparison of bright temperature distribution of SMOS and SMAP shows that the effect of RFI on SMOS is more serious due to the influence of electromagnetic radio frequency interference (RFI),which may be the reason why the RMSE of soil moisture product of SMOS is higher than that of passive microwave soil moisture product of SMAP.
Key words: Soil moisture    Microwave remote sensing    SMAP    SMOS    Validation
收稿日期: 2017-02-27 出版日期: 2018-03-16
:  TP79  
基金资助: 吉林省科技发展计划优秀青年人才基金项目(20170520078JH),科技基础性工作专项 “测绘地物波谱本底数据库建设”(2014FY210800-4),中国科学院东北地理与农业生态研究所青年科学家小组项目“基于卫星星座观测体系的农业遥感信息服务示范系统关键技术研发”(DLSXZ1602)。

作者简介: 白瑜(1992-),男,山西平遥人,硕士研究生,主要从事微波定量遥感研究。E-mail:baiyu15@mails.jlu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白瑜
孟治国
赵凯

引用本文:

白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2018.1.0078.

Bai Yu,Meng Zhiguo,Zhao Kai. Pixel-scalesoil Moisture Monitoring Network and Its Preliminary Validation of L-band Soil Moisture Products. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2018.1.0078.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.1.0078        http://www.rsta.ac.cn/CN/Y2018/V33/I1/78

[1] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[2] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[3] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[4] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[5] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[6] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[7] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[8] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[9] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[10] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[11] 王云龙,黄晓东,邓婕,马晓芳,梁天刚. 欧亚大陆中高纬度区逐日无云积雪产品研发及验证[J]. 遥感技术与应用, 2016, 31(5): 1013-1021.
[12] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[13] 晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826.
[14] 杨勇帅,李爱农,靳华安,尹高飞,赵伟,雷光斌,边金虎. 中国西南山区GEOV1、GLASS和MODISLAI产品的对比分析[J]. 遥感技术与应用, 2016, 31(3): 438-450.
[15] 王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.