Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (4): 750-758    DOI: 10.11873/j.issn.1004-0323.2018.4.0750
模型与反演     
基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分
林利斌1,2,鲍艳松1,2,左泉1,2,房世波3
(1.南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044;
2.南京信息工程大学大气物理学院,江苏 南京 210044;
3.中国气象科学研究院生态环境与农业气象研究所,北京 100081)
Soil Moisture Retrieval over Vegetated Areas based on Sentinel-1 and FY-3C Data
Lin Libin1,2,Bao Yansong1,2,Zuo Quan1,2,Fang Shibo3
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science & Technology,Nanjing 210044,China;
2.School of Atmospheric Physics,Nanjing University of Information Science andTechnology,Nanjing 210044,China;
3.Institute of Ecological Environment and Agricultural Meteorology,Chinese Academyof Meteorological Sciences,Beijing 100081,China)
 全文: PDF(4437 KB)  
摘要:
基于新一代的Sentinel-1SAR数据与FY-3C的MWRI数据,研究植被覆盖地表土壤湿度反演方法。为消除植被对土壤湿度反演影响,首先利用FY-3C/MWRI的微波极化差异指数MPDI,建立植被含水量反演模型;然后,结合植被含水量反演模型和水—云模型,发展一种主被动微波联合反演植被覆盖地表土壤含水量模型;最后,在江淮地区开展反演试验,利用观测的土壤湿度数据进行反演结果的精度验证。结果表明:①对于植被覆盖地表土壤湿度反演,由FY3C/MWRI提取的MPDI对于去除植被影响效果较好;②相比于VH极化哨兵1号卫星数据,VV极化数据更适用于土壤含水量的反演,能够得到更高的土壤湿度反演精度;③哨兵1号卫星数据能够获得较高精度的土壤含水量反演结果,试验反演的土壤湿度值与实测值相关系数为0.561 2,均方根误差为0.044 cm3/cm3

 
关键词: 土壤含水量Sentinel-1FY-3C/MWRI水云模型植被含水量    
Abstract:
This study aims to develop soil moisture retrieval model over vegetated areas based on Sentinel-1 SAR and FY-3C data.In order to remove vegetation effect,the MWRI data from FY-3C was applied to establish the inversion model of vegetation water content.The model was combined with the original water-cloud model,and developing a soil moisture retrieval model by combining active and passive microwave remote sensing data.Finally,the experiment of the soil moisture retrieval was conducted in Jiangsu and Anhui province,and validating the inversion accuracy of soil moisture by measured data.The results showed that:①For the vegetation-covered surface,the Microwave Polarization Difference Index obtain from FY-3C/MWRI was suitable for removing vegetation effect.②Compared with the Sentinel-1 VH polarization data,the backscattering coefficient of VV polarization was more suitable for soil moisture retrieval and get a higher accuracy of soil moisture retrieval.③Sentinel\|1 data can obtain high precision soil moisture estimation results,and the correlation coefficient between the estimated and measured soil moisture is 0.561 2 and RMSE is 0.044 cm3/cm3.
Key words: Soil water content    Sentinel-1    FY-3C/MWRI    Water-cloud model    Vegetation water content
收稿日期: 2017-11-14 出版日期: 2018-09-08
:  TP 79  
基金资助: 国家自然科学基金国际(地区)合作与交流项目(61661136005),“六大人才高峰”高层次人才项目(2015-JY-013), 国家重点研发计划项目(2016YFA0600703)。
作者简介: 林利斌(1992-),男,湖北黄冈人,硕士研究生,主要从事土壤湿度遥感反演研究。 Email:18761607652@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林利斌
鲍艳松
左泉
房世波

引用本文:

林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.

Lin Libin,Bao Yansong,Zuo Quan,Fang Shibo. Soil Moisture Retrieval over Vegetated Areas based on Sentinel-1 and FY-3C Data. Remote Sensing Technology and Application, 2018, 33(4): 750-758.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.4.0750        http://www.rsta.ac.cn/CN/Y2018/V33/I4/750

[1] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[2] 刘璇,张晔,滕艺丹,丁照伦. 基于双倒高斯模型的高光谱数据植被光谱诊断性特征分析及水分反演[J]. 遥感技术与应用, 2016, 31(6): 1075-1082.
[3] 沙莎,胡蝶,王丽娟,郭铌,李巧珍. 基于Landsat8OLI数据的黄土高原植被含水量的估算模型研究[J]. 遥感技术与应用, 2016, 31(3): 558-563.
[4] 行敏锋,何彬彬. 主被动遥感数据协同估算干旱区草原植被生物量[J]. 遥感技术与应用, 2015, 30(6): 1122-1128.
[5] 闻熠,黄春林,卢玲,顾娟. 基于ASTER数据黑河中游植被含水量反演研究[J]. 遥感技术与应用, 2015, 30(5): 876-883.
[6] 何媛,文军,张堂堂,田辉,刘蓉,吕少宁,赖欣. 卫星微波遥感结合可见光遥感估算黄河源区土壤湿度研究[J]. 遥感技术与应用, 2013, 28(2): 300-308.
[7] 于健,杨国范,王颖,王长顺. 基于MODIS数据反演阜新地区土壤水分的研究[J]. 遥感技术与应用, 2011, 26(4): 413-419.
[8] 赵颖辉, 蒋从锋. 基于多源信息融合的土壤含水量估算[J]. 遥感技术与应用, 2010, 25(4): 486-492.
[9] 刘 蓉,文 军,张堂堂,刘远永,李振朝. 利用MERIS和AATSR资料估算黄土高原塬区植被含水量时空变化[J]. 遥感技术与应用, 2007, 22(3): 371-381.
[10] 魏文秋, 陈秀万. 热红外遥感监测土壤含水量模型及其应用[J]. 遥感技术与应用, 1993, 8(1): 17-25.