Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (3): 500-510    DOI: 10.11873/j.issn.1004-0323.2019.3.0500
荧光遥感专栏     
基于719 nm水汽吸收波段的日光诱导叶绿素荧光反演研究
刘鸥阳1,刘良云2,胡姣婵2,刘新杰2,蒋金豹1
(1.中国矿业大学(北京)地球科学与测绘工程学院,北京100083;
2.中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094)
Assessment of Solar-Induced Chlorophyll Fluorescence Retrieval from the Atmospheric H2O Absorption Bands at 719 nm
Liu Ouyang1,Liu Liangyun2,Hu Jiaochan2,Liu Xinjie2,Jiang Jinbao1
(1.China University of Mining &Technology (Beijing),Beijing 100083;
2.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
 全文: PDF(4200 KB)  
摘要:

日光诱导叶绿素荧光(SIF)是一种植物光合作用直接探测新方法。目前O2-A和O2-B吸收线波段的叶绿素荧光填充效应被广泛应用于探测近红外(760 nm)和红光波段(687 nm)的植被冠层SIF信号。SIF光谱范围为650~800 nm,虽然水吸收波段(719 nm)介于叶绿素荧光发射峰值690 nm和740 nm之间,且具备较强的光谱吸收特征,但该水汽吸收光谱特征尚未应用于冠层SIF探测,因此,基于模型模拟和野外实验观测数据,使用夫琅禾费暗线SIF反演法,评价了基于719 nm 波段水吸收波段的SIF反演潜力,其中野外光谱数据采用ASD FieldSpec Pro便携式地物光谱仪(3 nm分辨率)测量。首先,利用FLD、3FLD、iFLD等3种经典的SIF反演方法,检验和对比分析了719水汽吸收波段的SIF反演性能,结果表明使用水吸收线比使用O2-B吸收线表现更优,反演RMSE为0.154 W/m2/μm/sr。其次,定量计算了水汽和氧气吸收波段SIF反演的敏感度和不确定性,结果表明,719水汽吸收波段与O2-B吸收线相比,其吸收线内外的反射率和荧光比值估算误差对SIF反演误差的贡献更小,但是显大于比02-A波段。最后,利用野外多角度和日变化观测实验数据,检验和分析了三个大气吸收波段的SIF反演结果,发现719 nm水吸收波段的冠层SIF与 O2-A和O2-B 氧气吸收波段具有相似的角度变化和日变化特征,表现为后视和热点方向的SIF高、前视和暗点方向的SIF低,以及中午SIF高、早晚SIF低。研究表明利用719 nm 波段的水汽吸收波段的光谱信息,可以准确反演近地面冠层SIF信号,研究结果为近地面冠层SIF 观测提供了一个新的波段。

 

Abstract: In the visible and near-infrared region,at a spectral resolution of 1 nm,the solar irradiance spectrum exhibits four absorption features:the HαFraunhofer line (656.4 nm),H2O absorption at 719 nm,the O2-B (687 nm) and O2-A (761 nm) bands.Although the H2O band is located between the chlorophyll fluorescence emission peaks at about 690 and 740 nm,it has never been investigated for SIF retrieval.In this paper,the potential of the H2O absorption band at 719 nm for SIF retrieval is investigated using different Fraunhofer line discrimination (FLD) methods based on the FluorMOD simulations and field data taken by an ASD FieldSpec Pro spectrometer (3 nm resolution).Firstly,the SIF retrieval performance using the H2O band was examined with different FLD methods at a spectral resolution of 1 nm.the results obtained using the HO band are better than for the O2-B band,and the associated RMSE is 0.154 W/m2/μm/sr.Then,the sensitivities and uncertainties of the SIF retrieval using the improved FLD (iFLD) method were calculated for the three atmospheric absorption bands.the total SIF estimation error and its contribution to the theoretical error in the two correction coefficients are found to be smaller using the H2O band than using the O2-B band,but significantly larger than that achieved using the O2-A band.Finally,the SIF retrieval using the iFLD method in the three atmospheric absorption bands is also examined in a field experiment.the SIF retrieval using the H2O band at 719 nm is found to have a similar performance to that using the O2-B and O2-A bands at canopy level.Finally,the SIF retrievals using the iFLD method in the three atmospheric absorption bands were also examined using field experiments.the SIF retrievals using the H2O band at 719 nm are similar to those at O2-A and O2-B oxygen absorption band,showing high values in backward and hot-spot directions and low values in forward and dark directions,and high SIF values at noon and low SIF in the morning and afternoon.Therefore,the H2-O absorb band provides a new band for retrieval of canopy SIF at near-ground platform.
Key words: Solar-induced chlorophyll fluorescence (SIF)    Hyspectral    Fraunhofer line discrimination (FLD)    FluorMOD model    Atmospheric vapor absorption    Atmospheric oxygen absorption
收稿日期: 2018-10-15 出版日期: 2019-07-01
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41571412、41601467),国家重点研发项目(2017YFA0603001)。
通讯作者: 刘鸥阳(1997-),男,湖南邵阳人,本科生,主要从事测绘遥感研究。E-mail:rs_oyliu@outlook.com。   
作者简介: 刘鸥阳(1997-),男,湖南邵阳人,本科生,主要从事测绘遥感研究。E-mail:rs_oyliu@outlook.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘鸥阳, 刘良云, 胡姣婵, 刘新杰, 蒋金豹. 基于719 nm水汽吸收波段的日光诱导叶绿素荧光反演研究[J]. 遥感技术与应用, 2019, 34(3): 500-510.

Liu Ouyang, Liu Liangyun, Hu Jiaochan, Liu Xinjie, Jiang Jinbao. Assessment of Solar-Induced Chlorophyll Fluorescence Retrieval from the Atmospheric H2O Absorption Bands at 719 nm. Remote Sensing Technology and Application, 2019, 34(3): 500-510.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.3.0500        http://www.rsta.ac.cn/CN/Y2019/V34/I3/500

[1]Guanter L,Zhang Y,Jung M,et al.Global and Time-Resolved Monitoring of Crop Photosynthesis With Chlorophyll Fluorescence[J].Proceedings of the National Academy of Sciences U S A,2014,111(14):1327-1233.<br /> [2]Liu L,Guan L,Liu X.Directly Estimating Diurnal Changes in GPP for C3 and C4 Crops Using Far-Red Sun-Induced Chlorophyll Fluorescence[J].Agricultural & Forest Meteorology,2017,232:1-9.<br /> [3]Zhang Zhaoying,Wang Songhan,Qiu Bo,et al.Retrieval of Sun-Induced Chlorophyll Fluorescence and Advancements in Carbon Cycle Application[J].Journal of Remote Sensing,2019,23(1):37-52.[章钊颖,王松寒,邱博,等.日光诱导叶绿素荧光遥感反演及碳循环应用进展[J].遥感学报,2019,23(1):37-52.]<br /> [4]Maxwell K,Johnson G N.Chlorophyll Fluorescence:A Practical Guide[J].Journal of Experimental Botany,2000,51:659-668.<br /> [5]Plascyk J.the MKII Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar Stimulated Luminescence[J].Optical Engineering,1975,14(4):339-346.<br /> [6][JP2]Plascyk J,Gabriel F.the Fraunhofer Line Discriminator MKII:An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement[J].IEEE Transactions on Instrumentation and Measurement,1975,IM-24(4):306-313.<br /> [7]Liu Liangyun,Zhang Yongjiang,Wang Jihua,et al.Detecting Photosynthesis Fluorescence Under Natural Sunlight based on Fraunhofer Line[J].Journal of Remote Sensing,2006,10(1):130-137.[刘良云,张永江,王纪华,等.利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J].遥感学报,2006,10(1):130-137.]<br /> [8]Zhang Yongjiang,Liu Liangyun,Hou Mingyu,et al.Progress in Remote Sensing of Vegetation Chlorophyll Fluorescence[J].Journal of Remote Sensing,2009,13(5):963-978.[张永江,刘良云,侯名语,等.植物叶绿素荧光遥感研究进展[J].遥感学报,2009,13(5):963-978.]<br /> [9]Carter G A,Theisen A F,Mitchell R .Chlorophyll Fluorescence Measured Using the Fraunhofer Line-Depth Principle and Relationship to Photosynthetic Rate in the Field[J].Plant,Cell & Environment,1990,13(1):79-83.<br /> [10]Carter G A,Jones J H,Mitchell R J,et al.Detection of Solar-Excited Chlorophyll and Fluorescence and Leaf Photosynthetic Capacity Using A Fraunhofer Line Radiometer[J].Remote Sensing of Environment,1996,55(1):89-92.<br /> [11]Liu L,Zhang Y,Wang J,et al.Detecting Solar-Induced Chlorophyll Fluorescence from Field Radiance Spectra based on the Fraunhofer Line Principle[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):827-832.<br /> [12]Liu L,Liu X,Hu J.Effects of Spectral Resolution and SNR on the Vegetation Solar-Induced Fluorescence Retrieval Using FLD-based Methods At Canopy Level[J].European Journal of Remote Sensing,2015,48(1):743-762.<br /> [13]Joiner J,Yoshida Y,Vasilkov A P,et al.First Observations of Global and Seasonal Terrestrial Chlorophyll Fluorescence from Space[J].Biogeosciences,2011,8(3):637-651.<br /> [14]Shan N,Ju W,Migliavacca M,et al.Modeling Canopy Conductance and Transpiration from Solar-Induced Chlorophyll Fluorescence[J].Agricultural and Forest Meteorology,2019,268(4):189-201.<br /> [15]Gomez-Chova L,Alonso-Chorda L,Amoros-Lopez J,et al.Solar Induced Fluorescence Measurements Using A Field Spectroradiometer[C].Earth Observation for Vegetation Monitoring and Water Management,2006,852:274-281.<br /> [16]Alonso L,Gmez-Chova L,Vila-FrancS L,et al.Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification[J].IEEE Geoscience and Remote Sensing Letters,2008,5(4):620-624.<br /> [17]Meroni M,Rossini M,Guanter L,et al.Remote Sensing of Solar-Induced Chlorophyll Fluorescence:Review of Methods and Applications[J].Remote Sensing of Environment,2009,113(10):2037-2051.<br /> [18]Maier S W,Günther K P,Stellmes M,et al.Sun-Induced Fluorescence:A New Tool for Precision Farming[M].Digital Imaging and Spectral Techniques:Applications to Precision Agriculture and Crop Physiology,2001:209-222.<br /> [19]Liu X,Liu L.Improving Chlorophyll Fluorescence Retrieval Using Reflectance Reconstruction based on Principal Components Analysis[J].IEEE Geoscience & Remote Sensing Letters,2015,12(8):1645-1649.<br /> [20]Guanter L,Frankenberg C,Dudhia A,et al.Retrieval and Global Assessment of Terrestrial Chlorophyll Fluorescence from GOSAT Space Measurements[J].Remote Sensing of Environment,2012,121(6):236-251.<br /> [21]Guanter L,Aben I,Tol P,et al.Potential of the Tropospheric Monitoring Instrument (TROPOMI) Onboard the Sentinel-5 Precursor for the Monitoring of Terrestrial Chlorophyll Fluorescence[J].Atmospheric Measurement Techniques,2015,8(3):1337-1352.<br /> [22]Joiner J,Yoshida Y,Vasilkov A P,et al.Filling-In of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects:Simulations and Space-based Observations from SCIAMACHY and GOSAT[J].Atmospheric Measurement Techniques Discussions,2012,5(1):163-210.<br /> [23]Guanter L,Koehler P,Walther S,et al.Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space:Status and Potential for Carbon Cycle Research[C]∥AGU Fall Meeting,2005,AGU Fall Meeting Abstracts.<br /> [24]Joiner J,Yoshida Y,Guanter L,et al.New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyper-Spectral Satellite Instruments:Simulations and Application to GOME-2 and SCIAMACHY[C]∥Agu Fall Meeting.Copernicus Publications,2016,1-41.<br /> [25]Khler P,Guanter L,Joiner J.A Linear Method for the Retrieval of Sun-Induced Chlorophyll Fluorescence from GOME-2 and SCIAMACHY Data[J].Atmospheric Measurement Techniques,2015,8(12):2589-2608.<br /> [26]Zhang Lifu,Wang Siheng,Huang Changping.Top-Of-Atmosphere Hyperspectral Remote Sensing of Solar-Induced Chlorophyll Fluorescence:A Review of Methods[J].Journal of Remote Sensing,2018,22(1):1-12.[张立福,王思恒,黄长平.太阳诱导叶绿素荧光的卫星遥感反演方法[J].遥感学报,2018,22(1):1-12.]<br /> [27]Du S,Liu L,Liu X,et al.Retrieval of Global Terrestrial Solar-Induced Chlorophyll Fluorescence from Tansat Satellite[J].Science Bulletin,2018,63(22):1502-1512.<br /> [28]Miller J R,Berger M,Goulas Y,et al.Development of A Vegetation Fluorescence Canopy Model[R].European Space Agency Contract,2005,16365/02/NL/FF.<br /> [29]Zarco-Tejada P J,Miller J R,Pedros R,et al.Fluormodgui V3.0:A Graphic User Interface for the Spectral Simulation of Leaf and Canopy Chlorophyll Fluorescence.Computers & Geosciences,2006,32(5):577-591.<br /> [30]Yan G,Ren H,Hu R,et al.A Portable Multi-Angle Observation System[C]∥IEEE International Geoscience and Remote Sensing Symposium,2012:6916-6919.<br /> [31]Maier S W,GNther K P,Stellmes M,et al.“Sun-Induced Fluorescence:A New Tool for Precision Farming.” in Digital Imaging and Spectral Techniques:Applications to Precision Agriculture and Crop Physiology[C]∥American Society of Agronomy,2003:209-222.<br /> [32]Jacquemoud S,Verhoef W,Baret F,Bacour C,et al.PROSPECT+SAIL Models:A Review of Use for Vegetation Characterization[J].Remote Sensing of Environment,2009,113(1):56-66.<br /> [33]Liu L,Liu X,Wang Z,et al.Measurement and Analysis of Bidirectional SIF Emissions in Wheat Canopies[J].IEEE Transactions on Geoscience & Remote Sensing,2016,54(5):2640-2651.<br /> [34]Middleton E M,Cheng Y B,Corp L A,et al.Canopy Level Chlorophyll Fluorescence and the PRI in A Cornfield[C].IEEE Geoscience and Remote Sensing Symposium,2012,7117-7120.<br /> [35]Amoros-Lopez J,Gomez-Chova L,Vila-Frances J,et al.Evaluation of Remote Sensing of Vegetation Fluorescence by the Analysis of Diurnal Cycles[J].International Journal of Remote Sensing,2008,29(17-18):5423-5436.<br /> [36]Fournier A,Daumard F,Champagne S,et al.Effect of Canopy Structure on Sun-Induced Chlorophyll Fluorescence[J].Isprs Journal of Photogrammetry & Remote Sensing,2012,68(1):112-120.<br /> [37]Wittenberghe S V,Alonso L,Verrelst J.et al.Bidirectional Sun-Induced Chlorophyll Fluorescence Emission Is Influenced by Leaf Structure and Light Scattering Properties:A Bottom-Up Approach[J].Remote Sensing of Environment,2015,158:169-179.
[1] 肖林 车涛 戴礼云. 多源雪深数据在中国的空间特征评估[J]. 遥感技术与应用, 0, (): 0-0.
[2] 郭健, 刘良云, 刘新杰, 胡姣婵, 竞霞. 基于查找表的塔基平台O2-A波段大气校正方法研究[J]. 遥感技术与应用, 2019, 34(3): 467-475.
[3] 陈思媛, 竞霞, 董莹莹, 刘良云. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3): 511-520.
[4] 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3): 521-530.
[5] 程志峰, 何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用, 2019, 34(3): 531-539.
[6] 李琼琼, 柳云龙. 城市居民区土壤重金属含量高光谱反演研究[J]. 遥感技术与应用, 2019, 34(3): 540-546.
[7] 宋明辉. 基于高分二号数据的面向对象城市土地利用分类研究[J]. 遥感技术与应用, 2019, 34(3): 547-552.
[8] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[9] 梁丽娟, 黄万里张容焱, 林广发, 彭俊超, 梁春阳. Sentinel-2卫星影像融合方法与质量评价分析[J]. 遥感技术与应用, 2019, 34(3): 612-621.
[10] 张海涛, 金燕, 刘万军. 基于Marr小波改进的SIFT算法的遥感影像配准[J]. 遥感技术与应用, 2019, 34(3): 622-629.
[11] 卢静, 贾立, 郑超磊, 胡光成. 遥感水分收支对区域水资源估算潜能[J]. 遥感技术与应用, 2019, 34(3): 630-638.
[12] 李靖, 李浩, 王树东, 杨莹莹, 吴太夏. 中亚五国主要湖泊水面变化特征及关键影响因素分析[J]. 遥感技术与应用, 2019, 34(3): 639-646.
[13] 徐梦竹, 徐佳, 邓鸿儒, 袁春琦. 基于全极化SAR影像的海岛地物分类[J]. 遥感技术与应用, 2019, 34(3): 647-654.
[14] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[15] 徐凡, 张雪红, 石玉立. 基于激光雷达和航拍影像的城市地物分类研究[J]. 遥感技术与应用, 2019, 34(2): 253-262.