Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (2): 484-496    DOI: 10.11873/j.issn.1004-0323.2020.2.0484
遥感应用     
基于无人机单视场全景图的地块面积测量研究
韦蕾蕾1,2(),方陆明1,2(),陈磊1,2,郑辛煜1,2
1.浙江农林大学 信息工程学院,浙江 临安 311300
2.浙江省林业智能监测与信息技术研究重点实验室,浙江 临安 311300
Research on Land Area Measurement based on Single Field of View of UAV
Leilei Wei1,2(),Luming Fang1,2(),Lei Chen1,2,Xinyu Zheng1,2
1.School of Information Engineering, Zhejiang A&F University, Hangzhou 311300, China
2.Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Zhejiang A&F University, Hangzhou 311300, China
 全文: PDF(7084 KB)   HTML
摘要:

提出一种基于无人机单视场图像的地块面积测量方法。首先通过无人机相机标定获得相机内外参数及畸变参数,再对单张的地块全貌图像进行畸变校正;接着提取图像中的目标地块区域并统计区域内像素数量;通过估计像素与实际面积比率,得到地块实际面积。实验结果表明:随着无人机飞行高度的增加,该方法计算精度先逐渐提升,到达一个峰值后逐渐下降,且在有效飞行高度内的相对误差都在10%以下,可以有效地计算地块面积。该方法对要求操作简便快速、精度不是很高的山地作业有现实意义。

关键词: 无人机摄影测量相机标定区域提取面积测量    
Abstract:

A method for measuring parcel area based on the instantaneous field of view of the UAV is proposed. Firstly, the internal and external parameters and distortion parameters of the camera on UAV are obtained by calibration, and the single image of the land parcel is corrected for distortion. Then extract the target parcel area in the image and count the number of pixels in the area. The actual area of the plot is obtained by estimating the ratio of pixels to area.The experimental results show that the calculation accuracy of this method increases with the increase of the flying height of the UAV. The calculation accuracy gradually increases after reaching a peak, and the relative error within the effective flight altitude is below 10% ,which can effectively calculate the parcel area. This method has practical significance for mountain operations requiring simple and fast operation and relatively low precision.

Key words: UAV photogrammetry    Panoramic image    Camera calibration    Regional extraction
收稿日期: 2018-10-19 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 浙江省科技重点研发计划资助项目(2018C02013)
通讯作者: 方陆明     E-mail: 150388443@qq.com;fluming@126.com
作者简介: 韦蕾蕾(1994-),女,广西来宾人,硕士研究生,主要从事林业信息技术研究。E?mail:150388443@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韦蕾蕾
方陆明
陈磊
郑辛煜

引用本文:

韦蕾蕾,方陆明,陈磊,郑辛煜. 基于无人机单视场全景图的地块面积测量研究[J]. 遥感技术与应用, 2020, 35(2): 484-496.

Leilei Wei,Luming Fang,Lei Chen,Xinyu Zheng. Research on Land Area Measurement based on Single Field of View of UAV. Remote Sensing Technology and Application, 2020, 35(2): 484-496.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.2.0484        http://www.rsta.ac.cn/CN/Y2020/V35/I2/484

图1  实验设计流程图
标定参数本文方法(像素)

张正友方法

(像素)

f3 995.3763 786.147
u02 291.2932 415.708
V01 627.5181 664.856
k1-1.566×10-2-3.304×10-2
k2-3.368×10-2-2.584×10-2
p1-1.613×10-3-
p23.080×10-3-
平均重投影误差0.7400.683
表1  相机标定参数估计结果对比
图2  坐标系空间关系示意图
图3  标定流程图
图4  标定图像与相机间的位置关系
图5  重投影误差
图6  畸变校正结果
图7  形态学处理过程
图8  区域提取结果与精度对比
图9  面积重叠精度
实验组

设定高度

/m

实际高度

/m

像素数量

/个

分辨率

/m

计算面积

/m2

实际面积

/m2

相对误差

/%

1350356.276 638 1260.08952 782.35357 6258.404
2370376.075 961 9840.09452 821.76857 6258.335
3390396.075 404 0220.09953 106.26457 6257.842
4410416.074 897 0520.10453 107.06157 6257.840
5430436.174 460 3930.10953 158.10157 6257.752
6450456.074 102 7790.11453 459.62257 6257.228
7470476.073 810 4180.11954 100.21657 6256.117
8490496.073 474 3540.12453 560.51557 6257.053
9500506.073 334 0840.12753 491.21657 6257.174
表2  计算结果与相对误差
图10  飞行高度与计算面积、误差的关系
图11  采伐迹地全景照片
图12  苗圃地全景照片
实验组

设定高度

/m

实际高度

/m

像素数量

/个

分辨率

/m

计算面积

/m2

实际面积

/m2

相对误差

/%

1400396.596 072 5490.10060 866.14056 6667.412
2420416.295 491 3840.10560 682.73456 6667.088
3430436.594 994 7370.10860 576.29856 6666.901
4460456.394 521 3200.11559 932.95056 6665.765
5480476.194 224 8090.12060 978.15856 6667.610
6500496.093 911 0830.12561 252.21456 6668.093
表3  采伐迹地计算结果与相对误差
实验组

设定高度

/m

实际高度

/m

像素数量

/个

分辨率

/m

面积

/m2

实际面积

/m2

相对误差

/%

18082.1811 079 4500.0204 242.2314 0514.721
2100102.287 003 7760.0254 237.8674 0514.613
3120122.284 739 4860.0304 153.7334 0512.536
4140142.283 525 2910.0354 222.7804 0514.240
5160162.382 781 3880.0404 370.6604 0517.891
6180182.182 192 0450.0454 359.6554 0517.619
表4  苗圃地计算结果与相对误差
图13  采伐迹地面积与飞行高度、相对误差的关系
图14  苗圃地面积与飞行高度、相对误差的关系
1 Shi Hualin. Application of UAV Aerophotographic System in Highway Strip Topographic Survey[J]. Bulletin of Surveying and Mapping,2014(6):60-62.
1 史华林. 无人机航测系统在公路带状地形测量中的应用[J]. 测绘通报, 2014(6):60-62.
2 Bi Kai, Li Yingcheng,Ding Xiaobo, al et, Aerial Photogrammetric Technology of Light Small UAV: Status and Trend of Development[J].Aerial Photogrammetric Technology of Light Small UAV: Status and Trend of Development,2015(3):27-48.
2 毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-48.
3 Xu Siqi, Yong Xiaolong, Xin Zhimin, et al. Oblique Photogrammetric Technique Applied in Surveying and Mapping Large-scale Topographic Mapt[J].Bulletin of Surveying and Mapping,2018(2):111-115.
3 徐思奇, 雍小龙, 夏志敏, 等. 倾斜摄影测量技术在大比例尺地形图测绘中的应用[J]. 测绘通报, 2018(2):111-115.
4 Li Hui,Yu Zhongdi,Cai Xiaobin,et al. River Terrace Extraction based on Unmanned Aerial Vehicle Remote Sensing[J].Editorial Committee of Earth Science-Journal of China University of Geosciences, 2017, 42(5):734-742.
4 李辉, 余忠迪, 蔡晓斌,等. 基于无人机遥感的河流阶地提取[J]. 地球科学-中国地质大学学报, 2017, 42(5):734-742.
5 Fan Zhongmou,Zhou Chengjun,Zhou Xinnian,et al. Application of Unmanned Aerial Vehicle Aerial Survey Technology in Forest Inventory[J]. Journal of Forest and Environment,2018(3):297-301.
5 樊仲谋, 周成军, 周新年, 等. 无人机航测技术在森林资源调查中的应用[J]. 森林与环境学报,2018(3):297-301.
6 Tsai R Y. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3(4):323-344. .
7 Tsai R Y. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision[C]∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 1986: 364-374.
8 Qiu Zhicheng,Xiao Jun. New Calibration Method of Line Structured Light Vision System and Application for Vibration Measurement and Control[J]. Editorial Office of Optics and Precision Engineering, 2019, 27(1): 230-240.
8 邱志成, 肖骏. 线结构光视觉系统标定新法及其振动测控应用[J]. 光学精密工程, 2019, 27(1): 230-240.
9 Lei Cheng, Hu ZhanYi,Wu Fuchao, et al. A Novel Camera Self-calibration Technique based on the Kruppa Equations[J]. Chinese Journal of Computers, 2003, 26(5):76-86.
9 雷成, 胡占义, 吴福朝,等. 一种新的基于Kruppa方程的摄像机自标定方法[J]. 计算机学报, 2003, 26(5):76-86.
10 Liu Yan,Li Tengfei. Reaserch of the Improvement of Zhang's Camera Calibration Method[J].Optical Technique,2014, 40(6):565-570.
10 刘艳, 李腾飞. 对张正友相机标定法的改进研究[J]. 光学技术, 2014, 40(6):565-570.
11 Liu Yanghao Xie Linbo. Research on Improved Camera Calibration Method based on Coplanar Points[J]. Computer Engineering, 2016, 42(8):289-293.
11 刘杨豪, 谢林柏. 基于共面点的改进摄像机标定方法研究[J]. 计算机工程, 2016, 42(8):289-293.
12 Zou Jiancheng, Tian Nannan. An Easy and High-precision Camera Calibration Method based on Planar Five Points[J]. Optics and Precision Engineering, 2017, 25(3):786-791.
12 邹建成, 田楠楠. 简易高精度的平面五点摄像机标定方法[J]. 光学精密工程, 2017, 25(3):786-791.
13 Zheng Jun, Gong Shengrong, Liu Chunping. Nonlinear Camera Calibration Method Using Corrected Template[J]. Computer Engineering and Applications, 2011, 47(31):192-196.
13 郑俊, 龚声蓉, 刘纯平. 一种使用校正模板的非线性摄像机标定方法[J]. 计算机工程与应用, 2011, 47(31):192-196.
14 Huang Haiqing, Huang Shengxiang. A Method of UAVs Airborne Camera Calibration based on Robust Estimation[J].Bulletin of Surveying and Mapping,2013(2):99-102.
14 何海清, 黄声享. 一种稳健估计的无人机机载相机标定法[J]. 测绘通报, 2013(2):99-102.
15 Jin Panpan, Li Furong.Based on Harris Corner Detection Algorithm[J].Software,2013, 34(4):54-56.
15 靳盼盼, 李芙蓉. 基于Harris算法的黑白棋盘格角点检测[J]. 软件, 2013, 34(4):54-56.
16 Wang Xiaohui, Li Xing. A Camera Calibration Algorithm and Application based on Corner Detection[J].Computer and Digital Engineering,2019,47(2):442-445.
16 王晓辉,李星.基于角点检测的摄像机标定算法及应用[J].计算机与数字工程,2019,47(2):442-445.
17 Li Ersen, Zhang Baoming, Zhou Xiaoming,et al.Study on the self-adaptive Canny Edge Detection Algorithm[J].Science of Surveying and Mapping, 2008, 33(6):119-120.
17 李二森, 张保明, 周晓明,等. 自适应Canny边缘检测算法研究[J]. 测绘科学, 2008, 33(6):119-120.
18 Liu Lixia, Li Baowen, Wang Yangping, et al. Remote Sensing Image Segmentation based on Improved Canny Edge Detection[J]. Computer Engineering and Applications,2019,55(12):54-58.
18 刘丽霞, 李宝文, 王阳萍,等. 改进Canny边缘检测的遥感影像分割[J]. 计算机工程与应用, 2019,55(12):54-58.
19 Yang Liwen, Zeng Chaoyang, Zhang Yongji.Method for the Edge Detection of Gray-scale Image based on the Mathematical Morphology[J].Foreign Electronic Measurement Technology, 2012(2):27-30.
19 杨丽雯, 曾朝阳, 张永继. 一种基于数学形态学的灰度图像边缘检测方法[J]. 国外电子测量技术, 2012(2):27-30.
20 Yu Xiangru, Ding Jianpei, Li Jinping, et al. Tire Impurity Defect Detection based on Morphology and Projection Histogram[J]. Journal of University of Science and Technology of China,2019,49(1):49-54.
20 于向茹,丁健配,李金屏,等.基于形态学与投影直方图的轮胎杂质缺陷检测[J].中国科学技术大学学报,2019,49(1):49-54.
21 Meng Qingpeng, Sun Bin, Ling Qing. Precision Analysis of the Large Scale Mapping based on Sirius UAV[J]. Bulletin of Surveying and Mapping, 2018(3):158-161.
21 孟庆鹏, 孙斌, 凌清. 天狼星无人机大比例尺测图精度分析[J]. 测绘通报, 2018(3):158-161.
[1] 柴旭荣,李明,周义,王金风,田庆春. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
[2] 郝丽春,孟庆岩,葛小三,张颖,胡蝶,张琳琳,唐子欣. 一种基于八分位法的工业热污染区提取方法[J]. 遥感技术与应用, 2020, 35(2): 469-477.
[3] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[4] 沈倩,周艳莲,单良. 基于遥感和站点观测数据的生态系统呼吸模型比较[J]. 遥感技术与应用, 2020, 35(2): 435-447.
[5] 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用, 2020, 35(2): 416-423.
[6] 徐玉雯,张浩,陈正超,景海涛. 基于深蓝算法的Sentinel-2数据气溶胶光学厚度反演[J]. 遥感技术与应用, 2020, 35(2): 372-380.
[7] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[8] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[9] 隋洪鑫,王江浩,刘银喜,邓羽. 轨道交通站域的城市空间演替轨迹与更新模式判定——多例比对与城市可持续发展启示[J]. 遥感技术与应用, 2020, 35(2): 302-314.
[10] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[11] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[12] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[13] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[14] 程春梅,韦玉春,李渊,涂乾光. 太湖水体GF-1/WFV影像的6S逐像元大气校正[J]. 遥感技术与应用, 2020, 35(1): 141-152.
[15] 刘俊,孟庆岩,葛小三,刘顺喜,陈旭,孙云晓. 基于BP神经网络的夏玉米多生育期叶面积指数反演研究[J]. 遥感技术与应用, 2020, 35(1): 174-184.