Please wait a minute...
img

官方微信

遥感技术与应用  2005, Vol. 20 Issue (1): 24-29    DOI: 10.11873/j.issn.1004-0323.2005.1.24
综述     
综合孔径微波辐射计的技术发展及其应用展望
吴 季, 刘 浩, 孙伟英, 姜景山
(中国科学院空间科学与应用研究中心国家863 计划微波遥感技术实验室, 北京 100080)
Technical Development and Application Prospect of Synthetic Aperture Radiometer
WU Ji, LIU Hao, SUN Weiying, J IANG Jingshan
(Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080, China)
 全文: PDF 
摘要:

介绍了综合孔径微波辐射计成像的基本原理, 回顾了干涉式综合孔径技术在过去十余年间的发展历程, 较详细地介绍并分析了目前世界上已有或在研的综合孔径微波辐射计系统, 其中包括美国的ESTAR 及其2D2STAR , GeoSTAR 计划, 欧空局SMO S 计划上的主载荷MIRAS, 芬兰赫尔辛基技术大学的HUT 22D, 以及中科院空间中心研制的C 波段及X 波段综合孔径微波辐射计等。最后, 对干涉式综合孔径技术的应用前景作了简要介绍与展望。

关键词: 综合孔径微波辐射计被动微波遥感成像辐射计    
Abstract:

Interferometric synthetic aperture radiometry is a relative new technique in the area of microwave earth observation to measure the brightness temperature distribution of the earth. It can enhance the spatial resolution of the passive microwave remote sensing effectively. Steady progresses of this technology have been achieved in both one dimensional and two dimensional cases since 1990' s. In this paper, the technique development of the interferometric synthetic aperture radiometry in the past ten years was reviewed. The imaging principle of the aperture synthesis was introduced. Both of the two most common means of the aperture synthesis, one dimensional and two dimensional, were described. Another aperture
synthesis means based on antenna array rotating was also described as the latest progress. Then the existing and proposed instruments were reviewed, including ESTAR, 2D-STAR, GeoSTAR from the US,MIRAS of the ESA mission SMOS, HUT-2D developed by Helsinki University of Technology, and the C-band and X-band systems developed by Center for Space Science and Applied Research, Chinese Academy of Sciences, etc. Finally, the application prospect of the interferometric synthetic aperture technology was discussed, especially in the area of earth observation, space exploration, reconnaissance and some security imaging application.

Key words: Synthetic aperture radiometer    Passive microwave remote sensing    Imaging radiometer
收稿日期: 2004-09-05 出版日期: 2011-11-16
:  TP 722. 6  
作者简介: 吴季(1958- ),男,博士,研究员,主要从事微波遥感以及空间探测方面的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴 季, 刘 浩, 孙伟英, 姜景山. 综合孔径微波辐射计的技术发展及其应用展望[J]. 遥感技术与应用, 2005, 20(1): 24-29.

WU Ji, LIU Hao, SUN Weiying, J IANG Jingshan. Technical Development and Application Prospect of Synthetic Aperture Radiometer. Remote Sensing Technology and Application, 2005, 20(1): 24-29.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2005.1.24        http://www.rsta.ac.cn/CN/Y2005/V20/I1/24

〔1〕Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing, Active and Passive〔M 〕. Volume, Microwave Remote Sensing Fundamentals and Radiometry, Addison Wesley Publishing Company, 1981.
〔2〕Thompson A R, Moran J M , Swenson GW. Interferometry and Synthesis in Radio Astronomy〔M 〕. Krieger Publishing Company, Malabar, Florida, 1994.
〔3〕Ruf C S, Swift C T, Tanner A B, et al. Interferometric Synthetic Aperture Microwave Radiometry for the Remote Sensing of the Earth〔J 〕. IEEE Trans GRS, 1988, 26 (5) : 597-611.
〔4〕董晓龙, 吴季, 黄永辉. 综合孔径微波辐射计及其反演成像〔J〕. 遥感技术与应用, 2000, 15 (2) : 74~78.
〔5〕Le Vine D M. Synthetic Aperture Radiometer System〔J 〕.IEEE Trans MTT, 1999, 47 (12) : 2228~2236.
〔6〕Le VineD M , GriffisA J , Swift C T, et al. ESTAR: A Synthetic Aperture Microwave Radiometer for Remote Sensing Applications〔J 〕. Proceedings of the IEEE, 1994, 82 (12) :1787~1801.
〔7〕Jackson T J , LeVine D M , Schiebe F R, et al. Large Area Mapping of Soil Moisture Using Passive Microwave Radiometry in the Washita Experiment〔J 〕. IGARSS,1993, 3: 1009~1012.
〔8〕LeVine D M , Jackson T J , Swift C T, et al. ESTAR Measurements During the Southern Great Plains Experiment(SGP99)〔J〕. IEEE Trans GRS, 2001, 39 (8) : 1680~1685.
〔9〕Guha A , Jacobs J M , Jackson T J , et al. Soil Moisture Mapping Using ESTAR Under Dry Conditions from the Southern Great Plains Experiment (SGP99) 〔J 〕. IEEE Trans GRS,2003, 41 (10) : 2392~2397.
〔10〕LeVine D M , Koblinsky C, Howden S, et al. Salinity Measurements During the Gulf Stream Experiment〔J〕. IGARSS,2000, 6: 2537~2539.
〔11〕http: //www. esa. int/export/esaL P/smos. html.
〔12〕LeVine D M , Haken M , Swift C T. Development of theSynthetic Aperture Radiometer ESTAR and the Next Generation〔J〕. IGARSS, 2004, 2: 1260~1263.
〔13〕Lambrigtsen B, W ilson W, Tanner A, et al. GeoSTAR-A Microwave Sounder for Geostationary Satellites 〔J 〕.IGARSS, 2004, 2: 777~780.
〔14〕Tanner A B, WilsonW J , KangaslahtiP P, et al. Prototype Development of a Geostationary Synthetic Thinned ApertureRadiometer, Geo STAR〔J〕. IGARSS, 2004, II: 1256~1259.
〔15〕Rautiainen K, Valmu H, Jukkala P, et al. Fourelement Prototype of the HUT Interferometric Radiometer 〔J 〕.IGARSS, 1999, 1: 234~236.
〔16〕Rautiainen K, Butora R, Auer T, et al. Development of Airborne Aperture Synthetic Radiometer (HUT22D ) 〔J 〕.IGARSS, 2003, 2: 1232~1234.
〔17〕Xiao longDong, JiW u, Suyun Zhu, et al. Design and Implementation of CAS C-band Interfereometric Synthetic Aperture Radiometer〔J〕. IGARSS, 2000, 2: 866~868.
〔18〕Hao Liu, Ji Wu, Shouzheng Ban, et al. The CAS Airborne X-band Synthetic Aperture Radiometer: System Configuration and Experimental Results〔J 〕. IGARSS, 2004, 3: 2230~2233.
〔19〕Brian Laursen, Niels Skou. Synthetic Aperture Radiometry Evaluated by a Two Channel Demonstration Model〔J 〕.IEEE Trans GRS, 1998, 36 (3) : 822~832.
〔20〕Gumsil Kang, Sunghyun Kim, Junho Choi, et al. Experimental Results of Sub Y-Type Array for High Angular Resolution Interferometric Radiometer at 37GHz〔A 〕. Proceedings of the 24th Asian Conference for Remote Sensing (24ACRS)〔C〕. 2003.
〔21〕Goutoule J M , Bredin C. Advanced Microwave Interferometer from Geo Orbit Background and Perspectives for NWC Applications〔J〕. IGARSS, 2004, 3: 2220~2221.
〔22〕Markus P, Helmut S, Stephan D. High Resolution Passive Millimetrewave Imaging Technologies for Reconnaissanceand Surveillance〔A 〕. Proceedings of SP IE, V 5077, Passive Milimeter Wave Imaging Technology and Radar Sensor Technology〔C〕. 2003. 77~86.

[1] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[2] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[3] 陈修治,陈水森,苏泳娴,李 丹,韩留生. 基于被动微波遥感的2008年广东省春季低温与典型作物寒害研究[J]. 遥感技术与应用, 2012, 27(3): 387-395.
[4] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[5] 李欣欣,张立新,蒋玲梅,赵少杰,赵天杰. 地形坡面对被动微波遥感影响的试验研究[J]. 遥感技术与应用, 2011, 26(1): 74-81.
[6] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2011, 27(1): 1-7.
[7] 陈昊, 金亚秋 . 星载微波辐射计对玉树地震岩石破裂辐射异常的初步检测[J]. 遥感技术与应用, 2010, 25(6): 860-866.
[8] 金亚秋, 陈昊, 谷松岩. AMSR-E数据散射与极化指数检测2008年1月中国南方冰雪灾害[J]. 遥感技术与应用, 2009, 24(6): 715-721.
[9] 白云洁, 卢 玲, 李 新, 车 涛. 积雪微波辐射亮温对积雪参数的敏感性分析——以多层积雪微波辐射模型为例[J]. 遥感技术与应用, 2009, 24(5): 622-630.
[10] 吴季,刘浩,阎敬业,孙伟英,张成,潘碑. 干涉式被动微波成像技术[J]. 遥感技术与应用, 2009, 24(1): 1-12.
[11] 潘 碑,吴 季. 干涉式被动微波成像仪二维频谱特征及误差分析[J]. 遥感技术与应用, 2007, 22(3): 410-415.
[12] 金亚秋,法文哲,徐 丰. 月球表面微波主被动遥感的建模模拟与反演[J]. 遥感技术与应用, 2007, 22(2): 129-134.
[13] 孙知文,施建成,杨 虎,蒋玲梅,彭 亮. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2): 264-267.
[14] 高 峰, 车涛, 王介民, 文军 . 被动微波遥感指数及其应用[J]. 遥感技术与应用, 2005, 20(6): 551-557.
[15] 傅春霞,吴 季. 小波离散点插值处理在综合孔径微波辐射计中的应用[J]. 遥感技术与应用, 2005, 20(4): 420-424.