Please wait a minute...
img

官方微信

遥感技术与应用  2005, Vol. 20 Issue (3): 315-320    DOI: 10.11873/j.issn.1004-0323.2005.3.315
研究与应用     
在水分胁迫下棉花冠层叶片全氮含量的高光谱遥感估算模型研究
孙 莉1,陈 曦1,包安明1,冯先伟1,张 清1,马亚琴2,王登伟2
(1中国科学院新疆生态和地理研究所,新疆乌鲁木齐830011;2石河子大学新疆作物高产研究中心,新疆石河子832003)
Study to the Model Development for Estimating the Total N Contentin Cotton Leaves and Canopies under Water Stress by Using Hyperspectral Remote Sensing
SUN Li1, CHEN Xi1, BO An-ming1,FENG Xian-wei1,MA Ya-qin2, WANG Deng-wei2
(1.Xinjiang institute of Ecology and Geography Chinese Academy of Sciences,Urmqi830011,China;2.Research Center of Xinjiang Croup High-Yield,Shihezi University,Shihezi832003,China)
 全文: PDF 
摘要:

研究利用美国产ASD地物光谱仪,获取新疆北部地区棉花冠层关键生育时期的高光谱数据,采用红边积分面积变量估测棉花冠层叶片的全氮含量,对反射光谱进行一阶微分,应用一阶微分光谱数据,衍生出基于光谱位置变量的分析方法,以红边积分面积(SDr)为自变量,冠层全氮(TN)含量为因变量,做相关分析与处理,构建新陆早6号红边积分面积与冠层叶片TN含量的相关数学模型。研究在不同水处理条件下,对棉花冠层单叶叶绿素含量和单叶全氮含量做相关分析,结果表明:叶绿素含量与TN含量呈显著的正相关(R=0.8723,n=39),叶绿素含量能有效的估计棉花单叶TN含量;红边积分面积变量与冠层TN含量呈显著的相关性,相关系数是0.7394(n=40),利用构建的相关模型可以较为精确地估测棉花两个品种新陆早6号与8号冠层叶片的全氮含量,RMSE分别为0.3859和0.4272。研究认为红边积分面积变量具有预测棉花冠层全氮含量的应用潜力,研究得出利用3边面积变量构造的数学模型对反演作物冠层TN含量有较高应用价值。研究认为,红边位移现象结合红边幅度的变化的研究,用于诊断棉花水分胁迫也是可行的,关键是建立相应合理的诊断指标体系。研究结果证明:①随着棉花的生长发育,叶片的生理生化参数发生变化,冠层的生理生化参数随之发生变化;②.棉花叶片叶绿素含量与叶片的全氮含量相关性显著(R=0.8723,n=38),通过建立数学模型,可以估测叶片中全氮的含量;③由一阶微分光谱衍生出基于光谱“红边”位置变量的分析方法,使我们认识到“红边”的变幅、形状和面积包含了各个波段的信息,这些波段综合产生的变量所构造的模型,为棉花氮素营养参数的估计提供了预测能力;④如果棉花叶绿素含量高,说明水分充足、氮代谢旺盛,植株处于生长旺盛时期,红边向蓝光方向发生了位移。利用红边位移现象结合红边幅度的变化的研究,用于诊断棉花水分胁迫也是可行的,关键是建立相应合理的诊断指标体系。

关键词: 水分胁迫棉花冠层全氮含量(TN)高光谱遥感估算模型水分胁迫棉花冠层全氮含量(TN)高光谱遥感估算模型    
Abstract:

In this paper, the hyperspectral data of cotton canopies grown in north Xinjiang at the main growing stage under water stress are derived by using an ASD spectrocoparator made in USA, the rededge integral areas are used to estimate the total N content in leaves of cotton canopies, and the analyzing method based on the spectral position variables is derived from the first differential spectral data. An analysis on the correlation between the red-edge integral areas (used as the independent variables) and the total N contents in leaves of cotton canopies (used as functions) is carried out so as to develop a mathematical model about the correlation between the red-edge integral areas and the total N contents in canopy leaves of cotton variety of Xin Luzao No.6. The correlations between the chlorophyll contents and the total N contents in separate leaves of cotton canopies under the different irrigation water volumes are researched. The results show that there is a significant positive correlation between the chlorophyll content and the total N content in leaves of cotton canopies (R=0.8723, n=39), and the data of chlorophyll contents can be used to effectively estimate the total N content in separate cotton leaves; there is also a significant correlation between the red-edge integral areas and the total N contents in leaves of cotton canopies,and the correlation coefficient is 0.7394 (n=40). The total N contents in canopy leaves of cotton varieties of Xin Luzao No. 6 and No.8 can be accurately estimated by using the developed model, and the values of RMSE are 0.3859 and 0.4272 respectively. It is considered that there is a potentiality to use the variables of red-edge integral areas for predicting the total N contents in leaves of cotton canopies, and it is also feasible that the data of displacement and change of red-edge extent can be used to recognize the moisture stress of cotton plants if a rational recognition system is develop. The conclusions of the study are as follows: (1) The physiological and biochemical properties of both cotton leaves and canopies are changed with cotton growth; (2) There is a significant correlation between the chlorophyll content and total N contents in cotton leaves (R=0.8723, n=38), and the total N contents in cotton leaves can be estimated by a mathematical model; (3) The analyzing method based on the variables of spectral position of "red edge" of cotton leaves, derived from the first differential spectral data, reveals that the change extent, shape and area of the "red edge" contain the information of various wavebands, and the capability of predicting Nnutrient in cotton leaves and canopies can be provided by using the developed model based on the variables from these wavebands; (4) It is reveals that the moisture supply is sufficient, the N metabolizing in cotton plants is hearty, the cotton plants grow luxuriantly, and the red edge of cotton leaves shifts towards blue light if the chlorophyll content in cotton leaves is high. It is feasible that the data of displacement and change of red-edge extent can be used to recognize the moisture stress of cotton plants if a rational recognition system is develop.

Key words: Cotton    Waters stress    Hyperspectrum    Chlorophyll content    Total N content    Red-edge    Cotton    Waters stress    Hyperspectrum    Chlorophyll content    Total N content    Red-edge
收稿日期: 2004-10-20 出版日期: 2011-10-27
:  TP 79  
基金资助:

国家863计划“数字农业”专项(2003AA209091),中国科学院知识创新重大项目(K2CX2-404-4)。

作者简介: 孙莉(1958-),女,副研,新疆生态与地理研究所,主要从事RS与GIS方面的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙 莉,陈 曦,包安明,冯先伟,张 清,马亚琴,王登伟. 在水分胁迫下棉花冠层叶片全氮含量的高光谱遥感估算模型研究[J]. 遥感技术与应用, 2005, 20(3): 315-320.

SUN Li, CHEN Xi, BO An-ming,FENG Xian-wei,MA Ya-qin, WANG Deng-wei. Study to the Model Development for Estimating the Total N Contentin Cotton Leaves and Canopies under Water Stress by Using Hyperspectral Remote Sensing. Remote Sensing Technology and Application, 2005, 20(3): 315-320.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2005.3.315        http://www.rsta.ac.cn/CN/Y2005/V20/I3/315

〔1〕 王珂,沈掌泉,王人潮.植物营养胁迫与光谱特性〔J〕.国土资源遥感,1999,1:9~14.
〔2〕 王珂,沈掌泉,王人潮.利用冠层及叶片反射光谱分析速测水稻氮素含量的研究〔A〕.生命科学研究与应用〔M〕.浙江:浙江大学出版社,1996.
〔3〕 王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.I.不同氮素水平的水稻光谱特征及其敏感波段的选择〔J〕.浙江农业大学学报,1993,19(增刊) :7~14.
〔4〕  Al-Abbas AH, Barr R Hall S D. Spectra of Normal and Nutrient-Deficient Maize Leaves〔J〕. Agron J,1974.66: 16~20.
〔5〕 牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析〔J〕.遥感学报,2000,4(2):125~129.
〔6〕 浦瑞良,宫鹏.高光谱遥感及其应用〔M〕.北京:高等教育出版社,2000. 3~53.
〔7〕 孙莉,陈曦,包安明,等.棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析〔J〕.干旱区地理,2004,27(1):124~129.
〔8〕 程一松,胡春胜,王成,等.养分胁迫下的夏玉米生理反应与光谱特征〔J〕.中国农业科学, 2001,23(6):321~326.
〔9〕 Danson F M. Red Edge Response to Leaf Area Index〔J〕. Int J Remote Sensing, 1995,36(1):45~53.
〔10〕Pinar A. Grass Chlorophyll and the Reflectance Red Edge〔J〕. Int J Remote Sensing, 1996, 17(2):351~357.
〔11〕孙莉,陈曦,包安明,等.用高光谱数据诊断水分胁迫下棉花冠层叶片氮素状况的研究〔J〕棉花学报. 2004,16(5):291~295.
〔12〕沈掌泉,王珂,朱君艳.叶绿素计诊断不同水稻品种氮素营养水平的研究初报〔J〕.科技通报,2002,3:173~176.

[1] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[2] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.
[3] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[4] 刘慧珺,苏红军,赵-波. 基于改进萤火虫算法的高光谱遥感多特征优化方法[J]. 遥感技术与应用, 2018, 33(1): 110-118.
[5] 唐超,邵龙义. 高光谱遥感地物目标识别算法及其在岩性特征提取中的应用[J]. 遥感技术与应用, 2017, 32(4): 691-697.
[6] 苏红军,赵波. 基于共形几何代数的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2017, 32(3): 539-545.
[7] 史飞飞,高小红,杨灵玉,何林华,贾伟. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017, 32(2): 206-217.
[8] 朱济帅,尹作霞,谭琨,王雪,李二珠,杜培军. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130.
[9] 张霞,戚文超,孙伟超. 基于数学形态滤波的植被光谱去噪方法研究[J]. 遥感技术与应用, 2016, 31(5): 846-854.
[10] 王茂芝,徐文皙,王璐,郭科. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4): 616-625.
[11] 贺军亮,张淑媛,查勇,蒋建军. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 2015, 30(3): 407-412.
[12] 刘玉琴,沙晋明,余涛,米晓飞,李家国,王德生. 基于宽波段和窄波段植被指数的草地LAI反演对比研究[J]. 遥感技术与应用, 2014, 29(4): 587-593.
[13] 钱进,罗鼎. 基于成对约束半监督降维的高光谱遥感影像特征提取[J]. 遥感技术与应用, 2014, 29(4): 681-688.
[14] 周子勇. 高光谱遥感油气勘探进展[J]. 遥感技术与应用, 2014, 29(2): 352-36.
[15] 吕晓凯,李传荣,马灵玲,苑馨方,李晓辉. 一种基于物理机理的高光谱遥感图像真彩色校正模型[J]. 遥感技术与应用, 2013, 28(3): 467-473.