Please wait a minute...
img

官方微信

遥感技术与应用  2005, Vol. 20 Issue (5): 465-468    DOI: 10.11873/j.issn.1004-0323.2005.5.465
技术研究与图像处理     
双层植被结构冠层光谱特性的理论模拟
沈 艳 1,2 , 牛铮 2, 缪启龙 1, 王汶 3
1.南京信息工程大学气象学院,江苏 南京 210044 2.中国科学院遥感应用研究所遥感科学国家重点实验室,北京 100101 3.中国人民大学环境学院,北京 100872
Theoretical Simulation of Vegetation Canopy's Optical Characteristics with Two-layer Structure
SHEN Yan 1,2 , NIU Zheng 2, MIAO Qi-long 1, WANG Wen 3
1.College of Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China; 3.College of Environment, Renmin University of China, Beijing 100872, China
 全文: PDF 
摘要:

利用双层冠层反射率模型ACRM,模拟不同叶面积指数LAI、含水量Cw和结构参数N下,波长是820nm和1600nm冠层反射率的角度分布。结果说明,该模型能准确模拟出“热点”效应 |冠层反射率角度分布对LAI的敏感性小于LAI和Cw以及LAI和N的共同作用。其中LAI和Cw共同作用对波长1 600 nm反射率角度分布的影响非常显著,而LAI和N的共同作用在820 nm略微大于1 600 nm。另外,提取冠层含水量的土壤可调节水分指数SAWI受冠层结构的影响也较大。今后在模型选取中应该更好的考虑冠层结构影响。

关键词: 冠层 双层结构 模型 土壤可调节水分指数    
Abstract:

Several vegetation canopies have a two-layer structure. In forests a moss or lichen layer is on ground surface under grass layer. In field crops a thin weed layer on ground under crop canopy is rather common. Both, optical and structural parameters of these two layers may be rather different and if we use homogeneous canopy reflectance (CR) models for the calculation of the directional reflectance of such canopies using mean (weighted mean) values of phytometrical and optical parameters we may have systematic errors in reflectance values. In this article, based on the two-layer canopy reflectance model ACRM, canopy reflectance angular distributions with wavelength 820 nm and 1 600 nm are simulated under the influence of LAI (leaf area index), Cw (water content)and N (a structural parameter). Research results indicate that the hot spot effect can be simulated precisely. The sensitivity of canopy reflectance angular distributing to LAI is less than to LAI-Cw and LAI-N. Reflectance angular distribution at 1 600 nm wavelength is strongly related to LAI and Cw while reflectance at 820nm is appreciable larger than the one at 1 600 nm under LAI and N effect. Besides, using information contained in near-infrared (820 nm)and short-wave infrared (1 600 nm) canopy reflectance we proposed a soil-adjusted water index which is employed to retrieve the canopy water content is also greatly influenced by canopy structure. Canopy structure is worth considering in the process of model selection henceforth.

Key words: Canopy    Two-layer structure    Model    Soil-adjusted water index
收稿日期: 2004-11-03 出版日期: 2011-11-17
:  TP 79  
基金资助:

国家重点基础研究发展规划项目(G2000077902)、中国科学院知识创新工程重大项目(KZCX1-SW-01-02)和国家自然科学基金资助项目(40271086)资助。

作者简介: 沈艳(1977-),女,博士生,主要从事植物高光谱遥感和全球变化方面的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈艳
牛铮
缪启龙
王汶

引用本文:

沈艳, 牛铮, 缪启龙, 王汶 . 双层植被结构冠层光谱特性的理论模拟[J]. 遥感技术与应用, 2005, 20(5): 465-468.

CHEN Yan, NIU Zheng, JIU Qi-Long, WANG Wen. Theoretical Simulation of Vegetation Canopy's Optical Characteristics with Two-layer Structure. Remote Sensing Technology and Application, 2005, 20(5): 465-468.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2005.5.465        http://www.rsta.ac.cn/CN/Y2005/V20/I5/465

〔1〕 Verhoef W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: The SAIL Model〔J〕. Remote Sensing of Environment, 1984,16:125~141.〔2〕 Jacquemoud S, Baret F. PROSPECT: A Model of Leaf Opt-ical Properties〔J〕. Remote Sensing of Environment, 1990,34:75~91. 〔3〕 Dawon T P, Curran P J, North P R J, et al. LIBERTY: Modeling the Effects of Leaf Biochemistry on Reflectance Spectra〔J〕. Remote Sensing of Environment, 1998,65:50~60. 〔4〕 Kuusk A. A Two-layer Canopy Reflectance Model〔J〕. Journal of Quantitative Spectroscopy & Radiative Transfer. 2001,71:1~9. 〔5〕 沈艳,牛铮,颜春燕. 植被叶片及冠层层次含水量估算模型的建立〔J〕.应用生态学报,2005,16:1218~1223.

[1] 杨军,裴剑杰. 一种改进的隐马尔可夫随机场遥感影像分割算法[J]. 遥感技术与应用, 2018, 33(5): 857-865.
[2] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[3] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[4] 马真东,摆玉龙. 基于地理处理服务的地下水脆弱性评价研究[J]. 遥感技术与应用, 2018, 33(4): 759-765.
[5] 康文慧,宋晓谕,李洁,邓晓红,王宏伟,孙栋元. 基于GIS技术的流域生态补偿方案设计[J]. 遥感技术与应用, 2018, 33(4): 766-774.
[6] 丁安心,焦子锑. 基于线性核驱动模型的BRDF模型集成与案例分析[J]. 遥感技术与应用, 2018, 33(3): 545-554.
[7] 姚星辉,尤红建. 多重观测卫星影像的无控区域网平差[J]. 遥感技术与应用, 2018, 33(3): 555-562.
[8] 牛明慧,陈福春. 基于月球反射的遥感仪器在轨定标方法[J]. 遥感技术与应用, 2018, 33(2): 337-341.
[9] 万玲,尤红建,程跃兵,卢晓军. 合成孔径雷达图像分割研究进展[J]. 遥感技术与应用, 2018, 33(1): 10-24.
[10] 赵航,陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018, 33(1): 177-184.
[11] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[12] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[13] 杨双宝,翟振和,许可,王志森,史灵卫,王磊,崔海英,徐曦煜. 合成孔径雷达高度计数据处理方法[J]. 遥感技术与应用, 2017, 32(6): 1083-1092.
[14] 李玉琴,苏程,王习之,黄智才,章孝灿. 菲律宾吕宋岛斑岩铜金矿遥感找矿模型[J]. 遥感技术与应用, 2017, 32(6): 1151-1160.
[15] 赵梦雨,薛亮. 咸阳市生境质量变化遥感监测研究[J]. 遥感技术与应用, 2017, 32(6): 1171-1180.