Please wait a minute...
img

官方微信

遥感技术与应用  2006, Vol. 21 Issue (6): 601-606    DOI: 10.11873/j.issn.1004-0323.2006.6.601
综述     
基于遥感数据和作物生长模型的小麦变量施肥研究进展
蒋阿宁1, 2, 刘克礼1, 赵春江2, 黄文江2, 王纪华2, 刘良云2, 薛绪掌2
( 1. 内蒙古农业大学, 呼和浩特 010019; 2. 国家农业信息化工程技术研究中心, 北京 10008)
Advance in Wheat Variable-rate Nitrogen Fertilization Based on Crop Simulation Models and Remote Sensing Data
JIANG A-ning 1, 2, LIU Ke-li1, ZHAO Chun-jiang2 , HUANG Wen-jiang2 ,WANG Ji-hua2 , LIU Liang-y un2, XUE Xu-zhang 2
( 1. Inner Mongolia Agricultural University , Huhhot 010019, China; 2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100089, China)
 全文: PDF 
摘要:

就国内外基于遥感数据和作物生长模型在变量施肥技术的研究应用作了阐述, 提出了快速、无损农业测试技术将是精准变量农业和数字农业今后的发展方向, 对作物生长模型以及精准变量施肥技术的研究进展作了较系统的调查研究, 阐述了将遥感数据与作物生长模型进行数据同化, 实现以高产、优质、环保为目的农业生产的可行性。并结合我国国情提出了发展精准农业变量施肥技术所面临的困难和出路。

关键词: 小麦 变量施肥 光谱指数作物生长模型    
Abstract:

 This paper expounded the application of wheat variable-rate nitrogen fertilization based on crop simulation models and remote sensed data. It was regarded as trends of precision fertilization by variablerate fertilization technology and nondestructive monitoring technology , progress of crop simulation models and precision variable rate technology were investigated and researched systematically. Crop simulation models aim at estimating agricultural production as a function of weather and soil conditions as well as crop management practices, and provide descriptions of canopy state variables and time integration of biophysical processes. Remote sensing technique is applying in many studies, such as the monitoring and protection of agricultural field, the estimation of yield in large area crop, the monitoring of crop growth, the monitoring of agricultural and meteorologic disaster and so on. So a data assimilation of crop simulation models and remote sensing data will improve grain yield and grain protein content and decrease the environment pollution rate. At last , the facing difficulties and out let of developing precision fertilization in China was brought forward.

Key words: Wheat    Variable-rate fertilization    Spectral index    Crop simulation models
收稿日期: 2006-03-03 出版日期: 2011-09-27
:  TP 79   
基金资助:

北京市自然科学基金项目( 4052014) , 国家自然科学基金项目( 40471093, 40571118) 和国防科技工业民用专项科研技术研究项目( JZ2005001-06) 。

作者简介: 蒋阿宁( 1982- ) , 女, 硕士研究生, 研究方向为遥感农业应用。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

蒋阿宁, 刘克礼, 赵春江, 黄文江, 王纪华, 刘良云, 薛绪掌. 基于遥感数据和作物生长模型的小麦变量施肥研究进展[J]. 遥感技术与应用, 2006, 21(6): 601-606.

JIANG A-ning, LIU Ke-li, ZHAO Chun-jiang, HUANG Wen-jiang,WANG Ji-hua. Advance in Wheat Variable-rate Nitrogen Fertilization Based on Crop Simulation Models and Remote Sensing Data. Remote Sensing Technology and Application, 2006, 21(6): 601-606.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2006.6.601        http://www.rsta.ac.cn/CN/Y2006/V21/I6/601

〔1〕 Han S F, He Yong . Remote Sensing of Crop Nitrogen Needs and Variable-rate Nitrogen Application Technology〔J〕.Transaction of the Chinese Society of Agricultural Engineering ,2002, 18( 5) : 28-33.
〔2〕 Stone M L , Solie J B M, ann W R, et al. Use of Spectral Radiance for Correcting In-season Fertilizer Nitrogen Deficienciesin Winter Wheat〔J〕.Transactions of the ASAE ,1996, 39: 1623-1631.
〔3〕 Boegh E, Soegaard H, Broge N, et al . Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concent ration, and Photosynthes is Efficiency in Agriculture〔J〕.Remote Sensing of Environment , 2002, 81: 179-193.
〔4〕 deWit C T . Simulation of Assimilation, Respiration and Transpiration of Crops 〔M 〕. Simulation Mongraphs .Wageningen :Pudoc, 1978.
〔5〕 van Keulen H . Simulation of Water Use and Herbage Growthin Arid Rdgion 〔M 〕. Simulati on Monographs . Wageningen :Pudoc, 1975.
〔6〕 de Penning Vries F W F. Simulation of Ecophysiological Process of Growth in Several Annual Crops〔M 〕. Simulation Monographs. Wageningen: Pudoc, 1989.
〔7〕  Baker D M G. A Simulation of Cotton Crop Growth and Yield〔M〕. South Carolina: South Carolina Agriculture Experiment Station , 1983.
〔8〕 McKinion J M, Baker D N, Hes keth J d, et al . SIMCOT : A Simulation of Cotton Growth and Yield. U. S . Dept Agric Res Serv Rep〔M 〕. ARS-S-52, 1975.
〔9〕 Backer C H, Horrocks R D C. A Dynamic Simulation of Corn Production〔M 〕. Agri Res Serv Rep, 1975.
〔10〕 Ritche J T. The CERES-Maize Model〔A〕. Jones C A, Kiniry J R. CERES-Maize-A Simulation Model of Maize Growth and Development〔C〕. Texas A and M University Press, 1986.
〔11〕 ???? !∀#??∃!% &, Qiu B W. Mathematical Simulation on Waterheat Situation and Producation of Agricultural Ecosystem〔M. Beijing: Meteorological Publishing House, 1985.
〔12〕 IBSNAT . Technical Report 5: Documentation for IBSNAT Crop Model Input and Output Files, Version 1. 1: for DSSAT 2.1〔R〕. IBSNAT Project , 1990.
〔13〕 Brisson N, Mary B, Ripoche D, et al. STICS -a Generic Model for the Simulation of Crops and Their Water and Nitrogen Balances , I: Model Validation for Wheat and Maize〔J〕.Agronomie, 2002, 22: 69-92.
〔14〕 郑志明, 严力蛟. 灌溉水稻生长发育和潜力长廊的模拟模型〔J〕.生物数学学报, 1996, 11( 4) : 139-145.
〔15〕 严力蛟, 王兆骞, 杜建生, 等. 水稻生育期的动态模拟模型研究〔J〕.浙江农业大学学报, 1998, 24( 3) : 233-237.
〔16〕 吕永成, 宋嗣迪, 凌波, 等. 基于E S 的水稻优质高产栽培模拟优化决策咨询系统〔J 〕. 广西农业生物科学, 2000, 19( 4) : 27-30.
〔17〕 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究〔J〕.作物学报, 1997, 23( 4) : 418-422.
〔18〕 涂修亮, 胡秉民. 小麦物候发育的模拟研究〔J〕.湖北农业科学, 1999, ( 3) : 13-14.
〔19〕 刘铁梅, 曹卫星, 罗卫红. 小麦抽穗后生理发育时间的计算与生育期的预测〔J〕.麦类作物学报, 2000, 20( 3) : 29-34.
〔20〕 王桂玲, 高亮之. 冬小麦出间土壤水分平衡动态模拟模型的研究〔J〕.江苏农业学报, 1998, 14( 1) : 36-41.
〔21〕 尚宗波, 杨继武, 殷红, 等. 玉米生育综合动力模拟模式研究—土壤水分影响子模式〔J〕.中国农业气象, 1999, 20( 1) : 1-5.
〔22〕 郑国清, 高亮之. 玉米发育期动态模拟模型〔J〕.江苏农业学报, 2000, 16( 1) : 15-21.
〔23〕 姚运生, 罗新兰, 王秉昆, 等. 玉米植株形态生长的模拟〔J〕.玉米科学, 2000, 8( 增刊) : 30-32.
〔24〕 张银锁. 夏玉米植株及叶片生长发育热量需求的试验与模拟研究〔J〕.应用生态学报, 2001, 12( 4) : 561-565.
〔25〕 李秉柏. 棉花生育期模拟模型的研究〔J〕.棉花学报, 1991, 3( 2) : 59-62.
〔26〕 赵中华, 刘德章, 南建福. 棉花生育期模型及其应用研究〔J〕.山西农业大学学报, 1996, 16( 1) : 92-96.
〔27〕 张立祯, 曹卫星, 张思平, 等. 基于生理发育时间的棉花生育模拟模型〔J〕.棉花学报, 2003, 15( 2) : 97-103.
〔28〕 Stone M L, Solie J B M , ann W R, et al . Use of Spectral Radiance for Correcting In-season Fertilizer Nitrogen Deficiencies in Winter Wheat 〔J〕. Transactions of the ASAE,1996, 39: 1623-1631.
〔29〕 Han S F, He Yong . Remote Sensing of Crop Nitrogen Needsand Variable-rate Nitrogen Application Technology 〔J〕.Transaction of the CSAE, 2002, 18( 5) : 28-33 .
〔30〕 侯顺艳, 王秀, 薛绪掌, 等. 土壤精准管理变量施肥地理信息系统的应用研究〔J〕.河北大学学报( 自然科学版) , 2003, 23( 2) : 193-197.
〔31〕 金继运. 精准农业及其在我国的应用前景〔A〕. 金继运, 白由路主编. 精准农业与土壤养分管理〔C〕. 北京: 中国大地出版社, 2001.
〔32〕 Solie J B, Raun W R, Whitney R W, et al . Agronomic Based Field Element Size and Sensing Strategy for Nitrogen Application 〔A〕. Presented at the Agricultural Equipment Technology Conference〔C〕. November 1-4, 1995.
〔33〕 Solie J B, Raun W R, Whitney R W, et al . Optical Sensor Based Field Element Size and Sensing Strategy for Nitogen Application〔J〕.Trans ASAE , 1996, 39( 6) : 1983-1992.
〔34〕 Wright D L, Rasmussen V P, Baker D J, et al . Using Remote Sensing to Manage Wheat Grain Protein〔R〕. NASA SSC Report 2003, ARC-USU-001-02. Affiliated Research Center Final Reports 2002 〔CD-ROM 〕. Earth Science Applications Directorate, Nati onal Aeronautics and Space Administration,Joh n C. Stennis Space Center , Mississippi. ( ht tp: // www .gis . usu. edu/ArcWebpage/ inside- table/ 2003Presentations/NASA Reports/ Wheat02b. pdf )
〔35〕 陈立平. 精准农业变量施肥理论和试验研究〔D〕. 中国农业大学农学博士论文, 2003.
〔36〕 Lukina E V, Freeman K W, Wynn K J , et al . Nitrogen Fertilizat ion Optimization Algorithm Based on In-season Estimates of Yields and Plant Nitrogen Uptake〔J〕. Plant Nutr,2001, 24: 885-898.
〔37〕 田庆久, 闵祥军. 植被指数研究进展〔J〕.地球科学进展, 1998,( 4) : 327-333.
〔38〕 方红亮, 田庆久. 高光谱在植被监测中的研究综述〔J〕.遥感技术与应用, 1998, 13( 1) : 62-69.
〔39〕 Haboudane D, Miller J R, Tremblay N, et al. Integrated Narrow-band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture〔J〕.Remote Sensing of Environment , 2002, 81: 416-426.
〔40〕 Ramakris hna N, Steve R. Land Cover Characterization Using Multi-temporal Red, Near-IR, and Thermal-IR Data from NOAA/ AVHRR〔J〕.Ecological applications, 1997, 7 ( 1 ) :79-90.
〔41〕 Potdar M B, Geoge H R, Petter M J , et al. Sorghum Yield Modeling Based on Crop Growth Parameters Determined from Visible and Near-IR Channel NOAA /AVH RR Data〔J〕.International Journal of Remote Sensing , 1993, 14( 5) : 895-905.
〔42〕 江东, 王乃斌, 杨小唤, 等.N DVI 曲线与农作物长势的时序互动规律〔J〕.生态学报, 2002, 22( 2) : 247-252.
〔43〕 刘玉洁, 杨忠东.M ODIS 遥感信息处理原理与算法〔M〕. 科学出版社, 2001.
〔44〕 Bouman B A M . Linking Physical Remote Sensing Models with Growth Simulation Models, Applied for Sugar Beet〔J〕.International Journal of Remote Sensing, 1992, 13( 14) : 2565-2581.
〔45〕 王人潮, 王珂. 水稻单产遥感估测建模研究〔J〕.遥感学报,1998, 2( 2) : 119-124.
〔46〕 Maas S J. Use of Remotely -sensed Information in Agricultural Crop Growth Models〔J〕.Ecological Modelling, 1988,41: 247-268.
〔47〕 宇振荣, 辛景峰. 基于遥感和作物生长模型的作物产量差分析〔J/ OL〕. ht tp : //www. chinainfo.www.Com/ DAAM / Ning-RS. Crop. htm.
〔48〕 Bouman B A M. Crop Modeling and Remote Sensing for Yield Prediction. Netherland s〔J〕.Journal of Agricultural Science, 1995, 43: 143-161.
〔49〕 Bouman B A M. Linking Physical Remote Sensing Models with Crop Growth Simulation Models Applied for Sugar Beet〔J〕.International Journal of Remote Sensing, 1992, 13: 2565-2581.
〔50〕 Mass S J. Within-season Calibration of Modeled Wheat Growth Using Remote Sensing and Field Sampling〔J〕. Agronomy Journal , 1993, 85: 669-672.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王光镇,王静璞,邹学勇,韩柳,宗敏. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018, 33(1): 1-9.
[3] 王凯,赵军,朱国锋. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算[J]. 遥感技术与应用, 2018, 33(1): 158-167.
[4] 王一明,蒙继华,程志强. 关键物候期遥感数据缺失条件下的数据同化研究[J]. 遥感技术与应用, 2017, 32(4): 615-623.
[5] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[6] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[7] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.
[8] 朱庆,李俊生,张方方,申茜,林卉,王李娟,朱琳. 基于海岸带高光谱成像仪影像的太湖蓝藻水华和水草识别[J]. 遥感技术与应用, 2016, 31(5): 879-885.
[9] 冯艾琳,何洪林,刘利民,任小丽,张黎,葛蓉,赵凤华. 基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究[J]. 遥感技术与应用, 2016, 31(5): 958-965.
[10] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[11] 尹小君,张清,赵庆展,汪传建,宁川. 基于SVM的加工番茄细菌性斑点病氮素含量反演[J]. 遥感技术与应用, 2015, 30(3): 461-468.
[12] 王静,李新. 基于作物生长模型和多源数据的融合技术研究进展[J]. 遥感技术与应用, 2015, 30(2): 209-219.
[13] 权文婷,周辉. HJ星数据在关中冬小麦种植面积遥感监测中的应用 [J]. 遥感技术与应用, 2014, 29(6): 930-934.
[14] 杨苏新,张霞,帅通,林卉. 基于混合像元分解的喀斯特石漠化地物丰度估测[J]. 遥感技术与应用, 2014, 29(5): 823-832.
[15] 范伟,荀尚培,杨元建,何彬方,张宏群,吴必文,高锷,孙喜波,陈磊. 星载SAR在涡阳县冬小麦测产中的应用[J]. 遥感技术与应用, 2013, 28(6): 1101-1106.