Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (2): 117-124    DOI: 10.11873/j.issn.1004-0323.2008.2.117
研究与应用     
双通道算法与MODIS算法反演中国近海气溶胶光学特性的对比研究
刘毅1,董海鹰2,管兆勇3
(1.中国科学院大气物理研究所中层大气与全球环境探测实验室,北京 100029;
2.青岛市气象局|山东 青岛 266003;
3.南京信息工程大学大气科学系,江苏 南京 210044)
The Comparison of Aerosol Optical Parameter between MODIS and Two-Channel Retrieval Algorithm over East China Sea
LIU Yi1,DONG Hai-ying2,GUAN Zhao-yong3
(1.LAGEO,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing |100029,China;
2.Qingdao Meteorological Bureau,Qingdao |266003,China; 
3.Department of Atmospheric Science,NUIST,Nanjing |210044,China)
 全文: PDF(3754 KB)  
摘要:

利用双通道和IMAPP气溶胶反演算法处理TERRA/MODIS L1B数据得出中国近海气溶胶的光学厚度,与AERONET太阳光度计的反演结果作对比分析,验证了反演方法的可行性。同时,对各海域的反演结果及表征粒子谱宽度的Angstrom指数(α)的变化情况进行了分析,结果表明:在东海和日本以南等广阔海域,两种反演算法的结果同AERONET太阳光度计的观测结果基本一致,相关性较好;在渤海和黄海近海岸一带两者气溶胶光学厚度的反演值均偏高,其原因主要是由这些海域的二类水体的影响导致的。探讨分析了这些海域的水域特征及光学特性,为研究发展适合中国近海气溶胶特性的反演算法提供了依据。

关键词: 双通道算法MODIS卫星遥感中国近海    
Abstract:

Based on the level 1 data and the relevant ancillary data of the Moderate-resolution Imaging Spectro-radiometer (TERRA/MODIS),the aerosol optical depth over East China Sea was retrieved by International MODIS/AIRS Processing Package (IMAPP) and Two-Channel Aerosol Retrieval Algorithm,the inverse methods were validated with Aerosol Robtic Network (AERONET) solar direct radiance measurements.The distribution characteristics of aerosol optical depth and ngstrm exponent (which symbolizes the width of particle spectrum) over East China Sea during Oct - Nov 2002 were studied.The results indicate that the aerosol optical depth obtained by both methods over East Sea and the open sea area south of Japan are basically in consistent with the result from AERONET.However,due to the influence of Case 2 water,the aerosol optical depth is a bit high along the coastal area of Bohai Sea and Yellow Sea.The characteristics of East China Sea are analyzed,which provide the basic data for retrieval method over East China Sea.
 

Key words: Two-Channel Aerosol Retrieval Algorithm    MODIS    Satellite remote sensing    East China Sea
收稿日期: 2007-12-17 出版日期: 2011-10-24
:  TP 79  
基金资助:

国家重点基础研究发展计划973项目(2006CB403702);国家自然科学基金资助项目(40475015)。

作者简介: 刘毅(1961-):男,研究员,博士生导师。研究方向为卫星遥感大气气溶胶和大气成分。E-mail:liuyi@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘毅,董海鹰,管兆勇. 双通道算法与MODIS算法反演中国近海气溶胶光学特性的对比研究[J]. 遥感技术与应用, 2008, 23(2): 117-124.

LIU Yi,DONG Hai-ying,GUAN Zhao-yong. The Comparison of Aerosol Optical Parameter between MODIS and Two-Channel Retrieval Algorithm over East China Sea. Remote Sensing Technology and Application, 2008, 23(2): 117-124.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.2.117        http://www.rsta.ac.cn/CN/Y2008/V23/I2/117

[1] Long C S,Stowe L L.Using the NOAA/AVHRR to Study Stratospheric Aerosol Optical Thickness Following the Mt.Pinatubo Eruption[J].Geophysical Research Letter,1994,21(20): 2215-2218.
[2]    Husar R B, Prospero J M, Stowe L L. Characterization of Tropospheric Aerosols over the Oceans with the NOAA Advanced Very High Resolution Radiometer Optical Thickness Operational Product [J]. Journal of Geophysical Research,1997,102: 16889-16909.
[3] Mishchenko M I,Travis L D.Satellite Retrieval of Aerosol Properties over the Ocean Using Polarization as well as Intensity of Reflected Sunlight [J]. Journal of Geophysical Research,1997,102(14): 16989-17013.
[4] TanréD,Kaufman Y J,Herman M,et al.Remote Sensing of Aerosol Properties over Ocean Using the MODIS/EOS Spectral Radiance[J].Journal of Geophysical Research,1997,102(14): 16971-16988.
[5]    Liu Y,Zhou M Y. Temporal and Spatial Characteristics of Aerosols over the East China Sea[J].Acta Oceanologica Sinica,1999,21(1): 46-52.[刘毅,周明煜.中国近海大气气溶胶的时间和地理分布特征[J].海洋学报,1999,21(1): 46-52.]
[6] Zhao B L,Yu X D.Satellite Remote Sensing of Aerosol Optical Depth over Ocean[J].Chinese Science Bulletin,1986,21:1645-1649.[赵柏林,俞小鼎.海洋大气气溶胶光学厚度的卫星遥感研究[J].科学通报,1986,21: 1645-1649.]
[7]    Higurashi A, Nakajima T. Development of a Two-channel Aerosol Retrieval Algorithm on Global Scale Using NOAA AVHRR[J].Journal of Atmospheric Sciences,1999,56: 924-941.
[8] Liu Y J,Yang Z D.The Theory and Algorithm of Modis Remote Sensing Information Process[M].Beijing:Science Press,2001.[刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.]
[9] Remer L A,TanréD,Kaufman Y J,et al.Validation of MODIS Aerosol Optical Depth Retrieval over Ocean[J]. Geophysical Research Letters,2002,29(12): 1618-1621.
[10] Zhang J H,Wang M H,Mao J T.Error Analysis and Correction of Aerosol Remote Sensing Based on Multi-Wavelength Sun-Photometer[J]. Chinese Journal of Atmospheric Sciences,2000,24(6): 855-859.[张军华,王美华,毛节泰.多波段光度计遥感气溶胶误差分析及订正[J].大气科学,2000,24(6): 855-859.]
[11] Xia X A,Chen H B,Wang P C.Validation of MODIS Aerosol Retrievals and Evaluation of Potential Cloud Contamination in East Asia[J]. Journal of Environmental Sciences, 2004, 16(5): 832-837.

[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[5] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[6] 周为峰,曹利,李小恕,程田飞. 沿海牡蛎养殖的WorldView-2影像融合方法评价[J]. 遥感技术与应用, 2018, 33(1): 103-109.
[7] 陈洋波,张涛,窦鹏,董礼明,陈华. 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理[J]. 遥感技术与应用, 2017, 32(5): 893-903.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
[10] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[11] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[12] 张晗,余超,苏林,王雅鹏,陈良富. 基于OMI卫星遥感评估2015年阅兵期间华北地区SO2和NO2减排成效[J]. 遥感技术与应用, 2017, 32(4): 734-742.
[13] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[14] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[15] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.