Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (3): 272-277    DOI: 10.11873/j.issn.1004-0323.2008.3.272
研究与应用     
基于线性光谱混合模型(LSMM)的两种不同端元值选取方法应用与评价——以广州市为例
樊风雷
(华南师范大学地理科学学院,广东 广州 510631)
The Application and Evaluation of Two Methods Based on LSMM Model
--------A Case Study in Guangzhou
FAN Feng-lei
(School of Geography,South China Normal University,Guangzhou 510631,China)
 全文: PDF(2181 KB)  
摘要:

通过分别采用纯像元指数(PPI)和手动选取端元这两种不同的方法获得了2003年广州市区的植被、水体和不透水层3种端元,然后利用线性波谱分离法得到各个端元的丰度图像和均方根误差图像,从而获得广州市老八区不透水层的分量图。另外,还对比分析了基于线性光谱混合模型(LSMM)两种终端单元的选取方法的优缺点,并从定性的角度对所得结果进行精度评价。结果显示:基于线性光谱混合模型(LSMM)的方法获得广州市老八区不透水层的分量图是可行而有效的;手动选取端元的方法比纯像元指数(PPI)能够得到更高精度的分量图。

关键词: 终端单元线性光谱混合模型纯像元指数不透水层广州    
Abstract:

Currently,there were lots of methods on urban impervious surface researching,such as Linear Spectral Un-mixing method,Non-linear Spectral Un-mixing method,Matched Filtering method and so on,however, among all these methods the Linear Spectral Un-mixing method was applied popularly and wildly by the researchers.The Linear Spectral Un-mixing method based on Linear Spectral Mixing Model (LSMM) and obtained the proportion of each land types in each pixel through un-mixing each pixel in the remote sensing image.This paper used Purity Pixel Index (PPI) and manual selection method to select end-member and gained the abundance images of each end-member in each pixel and the RSME image by using linear spectral un-mixing method.At last,it obtained the impervious surface weight image of 8 areas in Guangzhou.Besides,this paper analyzed the two end-member selection methods and evaluated the precision of the result from the qualitative standpoint.The result revealed that the method could abtain the impervious surface weight image of 8 areas in Guangzhou efficiently and the manual selection method could gain the weight image with more precision than the PPI method.

Key words: End-member    Linear Spectral Mixing Model    Purity Pixel Index(PPI)    Impervious surface
收稿日期: 2008-02-28 出版日期: 2011-10-25
:  TP 79  
基金资助:

863重大项目子课题(2006AA06A306);973项目(2001CB209101);广东省科技项目(2005B30801007,2004A30401001);广东省自然科学基金(04002143);广东省自然科学基金(06025464)。

作者简介: 樊风雷(1977-):男,博士,讲师,研究方向为土地利用遥感监测。E-mail:fanfenglei@gig.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

樊风雷. 基于线性光谱混合模型(LSMM)的两种不同端元值选取方法应用与评价——以广州市为例[J]. 遥感技术与应用, 2008, 23(3): 272-277.

FAN Feng-lei. The Application and Evaluation of Two Methods Based on LSMM Model
--------A Case Study in Guangzhou. Remote Sensing Technology and Application, 2008, 23(3): 272-277.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.3.272        http://www.rsta.ac.cn/CN/Y2008/V23/I3/272

[1] Ridd M K.Exploring a VIS (Vegetation-Impervious SurfaceSoil) Model for Urban Ecosystem Analysis through Remote Sensing:Comparative Anatomy for Cities [J]. InternationalJournal of Remote Sensing,1995,16(12):2166-2185.
[2] Rashed T,Weeks J R,Gadalla M S,etal.Revealing the Anatomy of Cities through Spectral Mixture Analysis of Multispectral Satellite Imagery:A Case Study of the Greater Cairo Region,Egypt[J].Geocarto International,2001,16 (4):5-16.
[3] Wu C,Murray A T.Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J].Remote Sensing of Environment,2003,84:493-505.
[4] Zhou J,Chen Y H,Zhang J S,et al.An Urban Linear SpectralMixture Model Based on Spectral Similarity[J/OL].http://www.paper. edu. cn/downloadpaper. php? serial_ number=200609-422&type=1.[周纪,陈云浩,张锦水,等.一种基于光谱相似性的城市地表线性光谱混合模型[J/OL]. http://www.paper. edu. cn/downloadpaper. php? serial_ number=200609-422&type=1.]
[5] Chen J,Chen Y H,He C Y,etal.Sub-pixel Model for VegetionFraction Estimation Based on Land Cover Classification[J].Journal of Remote Sensing,2001,5(6):415-422.[陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6): 415-422.]
[6] Zou P,Wang Y P,Wang Z S,et al.Accessing the Linear Spectral Un-mixing Approach for Extracting Vegetation Information Using Landsat ETM+ Data in Macau [J]. Journal ofSouth China Normal University (Natural Science Edition),2006,(2):131-136.[邹蒲,王云鹏,王志石,等.基于ETM+图像的混合像元线性分解方法(LSMM)在澳门植被信息提取中的应用及效果评价[J].华师学报(自然科学版),2006,(2):131-136.]
[7] Xue Q,Kuang G Y,Li Z Y.Endmember Extraction Algorithmsfrom Hyperspectral Image Based on the Linear Mixing Model:An Overview[J]. Remote Sensing Technology and Application,2004(3):197-201.[薛绮,匡纲要,李智勇.基于线性混合模型的高光谱图像端元提取[J].遥感技术与应用,2004,(3):197-201.]

[1] 王茂芝,徐文皙,王璐,郭科. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4): 616-625.
[2] 周玉洁,王卷乐,郭海会. 基于谐波分析和线性光谱模型的耕地信息提取[J]. 遥感技术与应用, 2015, 30(4): 706-713.
[3] 张文婷,金可懿,宋开山,杭艳红. 基于多端元混合光谱模型与Landsat影像的北京不透水层动态研究[J]. 遥感技术与应用, 2015, 30(2): 321-330.
[4] 高利鹏,赵华亮,刘明翔,张华. 基于遥感影像不透水层估算的震后城区损坏面积评估[J]. 遥感技术与应用, 2013, 28(4): 582-587.
[5] 张 明,张 霞,赵 冬,黄长平,张立福. 一种用于线性光谱解混算法验证的模拟数据生成方法[J]. 遥感技术与应用, 2012, 27(5): 680-685.
[6] 张道卫,郭华东,孙中昶. 超大城市地表特征参数估算及其对城市热环境的影响研究[J]. 遥感技术与应用, 2012, 27(1): 51-57.
[7] 陈本清,杨燕明. 基于光谱混合模型的河口表层悬浮泥沙浓度卫星遥感反演研究[J]. 遥感技术与应用, 2009, 24(4): 469-477.
[8] 柯锐鹏,黎夏,乔纪刚,梅志雄. 广州南拓驱动的土地利用变化与城市蔓延遥感分析[J]. 遥感技术与应用, 2009, 24(4): 478-483.