Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (4): 486-492    DOI: 10.11873/j.issn.1004-0323.2010.4.486
研究与应用     
基于多源信息融合的土壤含水量估算
赵颖辉1,蒋从锋2
1.浙江同济科技职业学院,浙江 杭州 311231;
2.杭州电子科技大学 计算机学院,浙江 杭州 310018
Soil Moisture Estimation Based on Multi-source Information Fusion
ZHAO Ying-hui1,JIANG Cong-feng2
1.Zhejiang Tongji Vocational College of Science and Technology,Hangzhou 311231,China;
2.School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018,China
 全文: PDF(4171 KB)  
摘要:

遥感信息在大面积土壤水分监测中具有不可替代的优势。通过对试验区域的气象数据、土壤类型数据、土壤和水体的光谱特征曲线、多时相遥感影像数据等进行预处理,提取图像信息和属性数据,并对土地利用类型和植被覆盖度进行划分。基于土壤的光谱响应机制建立像元反射光谱信息分解模型,以此计算出该区域土壤容积含水率。结果表明该方法对于低植被区的监测精度较高(理论精度89.78%),可作为土壤水分监测预警的依据。

关键词: 遥感土壤含水量光谱特性    
Abstract:

Remote Sensing (RS) based soil moisture monitoring and estimating has advantages than conventional methods in large scale land survey and environmental evaluations due to its convenience in data acquisition.The procedure of soil moisture estimation based on multi\|source information fusion is proposed.First,the multi\|source data,such as weather information,soil type,spectrum characteristic curves and RS images are preprocessed to get the attribute data.The land utilization classification and vegetation cover intensity are calculated based on the formerly obtained data and the real survey data.Then a spectral decomposition model is proposed for soil moisture estimation.A case study is provided and the computational results of soil moisture show that the approximate estimation precision is 89.78% in lands with lower vegetation cover intensity.Moreover,the computational results fit fairly well with the measured data and show that the proposed model is feasible to be used for drought monitoring and early warning.

Key words: Remote sensing    Soil moisture    Spectral characteristics
出版日期: 2010-10-21
基金资助:

浙江省水利厅科技计划重点项目“基于多源信息融合的旱情遥感监测研究”(RB0927)。

作者简介: 赵颖辉(1982-),女,讲师,主要从事遥感在水文水资源中的应用研究。E-mail:zhaoyinghuihust@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵颖辉
蒋从锋

引用本文:

赵颖辉, 蒋从锋. 基于多源信息融合的土壤含水量估算[J]. 遥感技术与应用, 2010, 25(4): 486-492.

ZHAO Ying-hui, JIANG Cong-feng. Soil Moisture Estimation Based on Multi-source Information Fusion. Remote Sensing Technology and Application, 2010, 25(4): 486-492.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.4.486        http://www.rsta.ac.cn/CN/Y2010/V25/I4/486

[1]Pratt A,Ellyett C D.The Thermal Inertia Approach to Mapping of Soil Moisture and Geology[J].Remote Sensing of  Environment,1979,8(2):151-168.
[2]Carlsorn T N.Regional-scale Estimates of Surface Moisture Availability and Thermal Inertia Using Remote Thermal Measurements[J].Remote Sensing Reviews,1986(1):197-247.
[3]Matthews K B.Climate Soil Moisture Deficit Climate and Soil Data Integration in GIS[J].Climate,1994,28(3):273-283.
[4]Tian Guoliang,Yang Xihua,Zheng Ke.Remote Sensing Model for Wheat Drought Monitoring[J].Journal of Remote Sensing,1992,7(2):83-89.[田国良,杨希华,郑柯.冬小麦旱情监测模型研究[J].遥感学报,1992,7(2):83-89.]
[5]Liu Peijun,Zhang Lin,Alishir Kurban,et al.A Method for Monitoring Soil Water Contents Using Satellite Remote Sensing[J].Journal of Remote Sensing,1997,1(2):135-139.[刘培君,张琳,艾里西尔·库尔班,等.卫星遥感估测土壤水分的一种方法[J].遥感学报,1997,1(2):135-139.]
[6]Zhang Shunqian,Qing Qingtao,Hou Meiting,et al.Remote Sensing and Impact Estimation for Sichuan Hot-drought Based on Temperature Vegetation Dryness Index[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(9):141-146.[张顺谦,卿清涛,侯美亭,等.基于温度植被干旱指数的四川伏旱遥感监测与影响评估[J].农业工程学报,2007,23(9):141-146.]
[7]Feng Rui,Zhang Yushu,Ji Ruipeng,et al.Remote Sensing Monitoring of Drought and Quantitative Evaluation System Base on GIS[J].Anhui Agricultural Sciences,2009,37(26):12626-12627,12683.[冯锐,张玉书,纪瑞鹏,等.基于GIS的干旱遥感监测及定量评估系统[J].安徽农业科学,2009,37(26):12626-12627,12683.]
[8]Mei Anxin,Peng Wanglu.Remote Sense Introduction[M].Beijing:Higher Education Press,2001:34-125.[梅安新,彭望禄.遥感导论[M].北京:高等教育出版社,2001:34-125.]
[9]Wu Yunzhao,Tian Qingjiu,Jin Zhenyu,et al.Evaluation of Simplified Procedures for Retrieval of Absolute Surface Reflectance from Landsat Enhanced Thematic Mapper (ETM+) [J].Remote Sensing Information,2004,2:9-12.[吴昀昭,田庆久,金震宇,等.ETM+数据绝对反射率反演方法分析[J].遥感信息,2004,2:9-12.]
[10]Lillesand T M,Kiefer R W.Remote Sensing and Image Interpretation (Fourth Edition)[M].Peng Wanglu,Yu Xianchuan,Zhou Tao,et al.Translation.Beijing:Puplishing House of Electronics Industry,2003:167-260.[利尔桑德 T M,基弗 R W.遥感与图像解译(第四版)[M].彭望禄,余先川,周涛等译.北京:电子工业出版社,2003:167-260.]
[11]Xing Zhurong,Feng Yougui,Yang Guijun,et al.Method of Estimating Vegetation Coverage Based on Remote Sensing[J].Remote Sensing Technology and Application,2009,24(6):849-854.[邢著荣,冯幼贵,杨贵军,等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用,2009,24(6):849-854.]

 

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[12] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[13] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[14] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[15] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.