Please wait a minute...
img

官方微信

遥感技术与应用  2011, Vol. 26 Issue (5): 640-646    DOI: 10.11873/j.issn.1004-0323.2011.5.640
微波遥感     
基于SAR数据的山地冰川表面运动速度分析
蒋宗立1,2,刘时银2,韩海东2,林剑1,龙四春1
(1.湖南科技大学建筑与城乡规划学院GIS系,湖南 湘潭411201;2.中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室,甘肃 兰州730000)
Analyzing Mountain Glacier Surface Velocities Using SAR Data
Jiang Zongli1,2,Liu Shiyin2,Han Haidong2,Lin Jian1,Long Sichun1
(1.Department of GIS ,School of Architecture and Urban Planning & Hunan University of Science and Technology,Xiangtan 411201,China; 2.State Key Laboratory of Cryosphereic Science,Cold Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China)
 全文: PDF(2628 KB)  
摘要:

合成孔径雷达(SAR)因其可全天时、全天候工作且不受云、雨的影响而成为遥感应用的前沿领域。SAR干涉测量(Inteferometry)利用SAR数据的相位信息可获得大地表面厘米级的形变而成为冰川表面流速监测广泛使用的手段;SAR图像相关方法(SRFT)能克服干涉测量方法因失相干严重而难以产生清晰的干涉条纹以及可见光图像质量由于云遮、雪盖限制的不足而成为目前山地冰川表面流速遥感监测的首选方式。为深入探讨SAR图像相关方法的适用性,以天山科契卡尔巴西冰川为研究区域,分析使用不同时间基线的ALOS PALSAR数据与ENVISat ASAR C-band 的图像相关方法估计冰川的表面流速,并使用实地测杆的DGPS(Differential GPS)测量流速进行对比验证,发现在冰川表碛覆盖区域使用图像相关方法测量的值与实测值有很好的一致性,而在裸露冰区域或坡度较大区域,误差比较大。比较长时间基线的SAR数据对特征识别的结果发现:时间基线为1 a的冬季获取的数据对估计值与实测值在表碛覆盖区域比较一致,这可能是由于前后两次获取图像时天气或地面状况比较接近。比较ALOS PALSAR 数据与ENVISat ASAR数据发现:波长较长的L-band(23.5 cm) 比C-band (5.7 cm)SAR数据更适合山地冰川的表面流速估计;另外在运用SAR数据特征匹配方法时也可能是极化方式的差异使得ALOS PALSAR (HH极化)数据比ENVISat ASAR(VV极化)数据更适合冰川研究。

关键词: 特征匹配冰川表面流速地面验证科契卡尔巴西冰川    
Abstract:

Synthetic Aperture Radar leads on the Remote sensing technology due to its excellent advantage such as independence of sunlight can work in all weather conditions and all day and all night,not easily affected by cloud and rain.Synthetic Aperture Radar data Feature-Tracking (SRFT) procedures can overcome the shortcomings of Interferometric Synthetic Aperture Radar (InSAR) due to decorrelation to obtain glacier surface velocities robustly.In order to discuss the suitability of the Feature-tracking procedures, To find the suitability of different SAR data sets to derive glacier surface velocity,SRFT of ALOS PALSAR Data and ENVISat ASAR data were employed and compared to obtain the Koxkar Baxi Glacier surface velocities.Data with different time intervals (temporal baseline) were used to calculate the glacier surface velocity.Which were validated by the in situ measurements.SRFT is a robust technology to derive mountain glaciers surface velocity while SAR interferometry may fail.The uncertainties were analyzed in the same time.We find that the velocities obtained in debris-covered area were well agreement with the in situ measurements.There exist much more uncertainties in the exposed ice regions where there are no apparent characteristics observed.And for long baseline datasets the weather conditions when SAR data acquired in the glacier region should be considered or lead to the occurrence of more errors.Its clear that L-band ALOS PALSAR data are more suitable for Feature-Tracking than ENVISat ASAR data in estimating mountain glaciers surface velocities due to the wavelength or polarization difference.

Key words: Feature-Tracking    Glacier surface velocity    Field measurements    Koxkar Baxi Glacier
收稿日期: 2011-02-07 出版日期: 2011-11-01
:  TP 79  
基金资助:

中国科学院知识创新工程重要方向项目 (KZCX2-YW-Q03-04),国家自然科学基金项目(41071044),科技部基础性工作专项项目(2006FY110200),国家自然科学基金项目(40801025),国家自然科学基础人才培养基金冰川学冻土学特殊学科重点项目(J093003/J0109)。

通讯作者: 刘时银(1963-),男,河南新县人,博士,研究员,主要从事冰川水资源学研究。Email:liusy@lzb.ac.cn。   
作者简介: 蒋宗立(1975-),男,湖南泸溪人,博士研究生,主要从事合成孔径雷达技术及应用研究。Email:hnkdjzl@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

蒋宗立,刘时银,韩海东,林剑,龙四春. 基于SAR数据的山地冰川表面运动速度分析[J]. 遥感技术与应用, 2011, 26(5): 640-646.

Jiang Zongli,Liu Shiyin,Han Haidong,Lin Jian,Long Sichun. Analyzing Mountain Glacier Surface Velocities Using SAR Data. Remote Sensing Technology and Application, 2011, 26(5): 640-646.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2011.5.640        http://www.rsta.ac.cn/CN/Y2011/V26/I5/640


[1]Ulaby F T,Moore R K,Feng A K.Microwave Remote Sensing[M].Beijing:Science Press,1986.[乌拉比,穆尔,冯健超.微波遥感[M].北京:科学出版社,1986.]
[2]Wang Chao,Zhang Hong,Liu Zhi.Space-borne Synthetic Aperture Radar Interferometry[M].Beijing:Science Press,2002.[王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.]
[3]Goldstein R M,Engelhardt H,Kamb B.Satellite Radar Interferometry for Monitoring Ice Sheet Motion:Application to an Antarctic Ice Stream[J].Science,1993,262:1525-1530.
[4]Strozzi T,Luckman A,Murray T,et al.Glacier Motion Estimation Using SAR Offset-Tracking Procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.
[5]Strozzi T,Kouraev A,Wiesmann A,et al.Estimation of Arctic Glacier Motion with Satellite L-band SAR Data[J].Remote Sensing of Environment,2008,112(3):636-645.
[6]Zhang Yong,Liu Shiyin,Han Haidong.Characteristics of Climate on the Keqicar Glacier on the South Slopes of the Tianshan Mountains During Ablation Period[J].Journal of Glaciology and Cryopedology,2004,26(5):545-550.[张勇,刘时银,韩海东.天山南坡科其卡尔巴契冰川消融期气候特征分析[J].冰川冻土,2004,26(5):545-550.]〖HJ2.2mm〗
[7]Xie Changwei,Ding Yongjian,Liu Shiyin,et al.Variation of Keqikaer Glacier Terminus in Tomur Peak during Last 30 Years[J].Journal of Glaciology and Cryopedology,2006,28(5):672-677.[谢昌卫,丁永建,刘时银,等.近30 a 来托木尔峰南麓科其喀尔冰川冰舌区变化[J].冰川冻土,2006,28(5):672-677.]
[8]Zhou Jianmin,Li Zhen,Li Xinwu.A Comparative Study of Coherence Patterns of C-Band and L-Band Interferometric SAR in Western Glacier Areas[J].Remote Sensing for Land & Resources,2009,2:9-14.[周建民,李震,李新武.C-band和L-band雷达干涉数据西部冰川区域相干性对比分析[J].国土资源遥感,2009,2:9-14.]
[9]Quincey D J,Luckman A,Benn D.Quantification of Everest Region Glacier Velocities between 1992 and 2002,Using Satellite Radar Interferometry and Feature Tracking[J].Journal of Glaciology,2009,55(192):596-606.
[10]Erten E,Reigber A,Hellwich O,et al.Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(2):394-405.
[11]Nakamura K,Doi K,Shibuya K.Estimation of Seasonal Changes in the Flow of Shirase Glacier Using JERS-1/SAR Image Correlation[J].Polar Science,2007,1:73-83.
[12]Huang Lei,Li,Zhen.Li Xinwu.Derivation of Glacier Velocity from SAR and Optical Data with Feature Tracking[C]//2009 IEEE Geoscience and Remote Sensing Symposium.Cape Town,2009.
[13]Zebker H,Villasensor A J.Decorrelation in Interferometric Radar Echoes[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):950-959.
[14]Huang Maohuan,Sun Zuozhe.Some Flow Characteristics of Continental-type Glaciers in China[J].Journal of Glaciology and Cryopedology,1982,4(2):35-45.[黄茂桓,孙作哲.我国大陆性冰川运动的某些特征[J].冰川冻土,1982,4(2):35-45.]

[1] 陈本清,杨燕明,郑凌虹,文洪涛. 基于SIFT和TPS算法的四旋翼无人机图像自动配准[J]. 遥感技术与应用, 2013, 28(4): 604-609.
[2] 程焱,周焰,林洪涛,潘恒辉. 基于SIFT特征遥感影像自动配准与拼接[J]. 遥感技术与应用, 2008, 23(6): 721-728.
[3] 胡应添,徐守时,黄戈祥,吴秀清. SAR图像中海上舰船目标自动检测新方法[J]. 遥感技术与应用, 2004, 19(6): 461-466.
[4] 刘直芳,张继平,张剑清,樊 红. 基于DSM和影像特征的城市变化检测[J]. 遥感技术与应用, 2002, 17(5): 240-244.