Please wait a minute...
img

官方微信

遥感技术与应用  2011, Vol. 26 Issue (6): 735-741    DOI: 10.11873/j.issn.1004-0323.2011.6.735
模型与反演     
青藏高原地表微波比辐射率的反演与分析
何文英1,陈洪滨1,孙强2,王旻燕3
(1.中国科学院大气物理研究所中层大气与全球环境探测实验室,北京 100029;
2.国家海洋局第三海洋研究所,福建 厦门 361000;3.国家气象信息中心,北京 100081)
The Characteristics of Microwave Surface Emissivity over Tibetan Plateau 
He Wenying1,Chen Hongbin1,Sun Qiang2,Wang Minyan3
(1.LAGEO,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
2.Third Institute of Oceanography State Oceanic Administration,Xiamen 361000,China;
3.National Meteorological Information Center,Beijing 100081,China)
 全文: PDF(2700 KB)  
摘要:

利用Aqua卫星上同时搭载的AMSR\|E和MODIS提供同步观测的微波和红外资料,反演青藏高原地区陆面微波比辐射率。结合MODIS反演的地表类型资料,分析该地区陆地微波比辐射率随地表类型、微波频率、不同时间尺度的变化特征。结果表明:该地区主要的3种地表类型中,草地比辐射率普遍高于裸地和灌木丛,并且后两者比辐射率的量值和变化趋势都很接近;陆面微波比辐射率随着频率增大而逐渐减小,并且垂直极化比辐射率随频率变化幅度较为显著。3种地表类型的比辐射率随年度变化很小,有一定的季节差异,而昼夜差异显著。不同地表的水平极化比辐射率差异幅度比垂直极化更加显著,能更有效地识别地表类型。

关键词: 青藏高原地表微波比辐射率AMSR-E地表类型    
Abstract:

We utilized the synchronous observation of MODIS and AMSR-E on Aqua satellite to retrieve the microwave surface emissivity of Tibetan Plateau.Combining with the data of land surface types derived from MODIS observations,we further analyzed the variations of microwave emissivity with frequency,different time scales,and land types over Tibetan Plateau.The results show that among the three main land types in Tibetan Plateau,the emissivity over grass land is higher than that over barren and shrub land,and the two latter have very similar trend and close value.The land surface emissivity decrease with increasing frequency,and the variation range at vertical polarization is more remarkable than that at horizontal polarization with increasing frequency.For different time scale,the annual variation is small,and the seasonal variation is a little bit,and the diurnal one is quite obvious.The differences of horizontal polarized emissivity over different land types are more obvious than those of vertical one so that the former emissivity could be more useful to classify land surface types.

Key words: Tibetan Plateau    Microwave surface emissivity    AMSR-E    Land surface types
收稿日期: 2010-12-31 出版日期: 2012-01-10
:  TP 722.6  
基金资助:

国家自然科学基金项目“中国典型地区陆面微波比辐射率的分布及其变化特征研究”(40605011)以及所启动课题(X090704J132)资助。

作者简介: 何文英(1973-) 女,四川平昌人,博士,副研究员,主要从事微波遥感理论和应用研究。Email:hwy@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何文英,陈洪滨,孙强,王旻燕. 青藏高原地表微波比辐射率的反演与分析[J]. 遥感技术与应用, 2011, 26(6): 735-741.

He Wenying,Chen Hongbin,Sun Qiang,Wang Minyan. The Characteristics of Microwave Surface Emissivity over Tibetan Plateau . Remote Sensing Technology and Application, 2011, 26(6): 735-741.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2011.6.735        http://www.rsta.ac.cn/CN/Y2011/V26/I6/735

[1]Jin Yaqiu.Analysis of SSM/I Data over the Desert Areas of China[J].Journal of Remote Sensing,1997,1(3):192-197.[金亚秋.星载微波SSM/I对中国西北沙漠地区的遥感数据的辐射特性分析[J].遥感学报,1997,1(3):192-197.]
[2]Jin Yaqiu.Data Analysis of the Spaceborne SSM/I over Crop Areas of the Northern China[J].Journal of Remote Sensing,1998,2(1):19-25.[金亚秋.星载微波SSM/I遥感在中国东北华北农田的辐射特性分析[J].遥感学报,1998,2(1):19-25.]
[3]Pan Guangdong,Wang Chao,Zhang Weiguo,et al.Seasonal Variations of Land Cover in China Using SSM/I[J].Journal of Remote Sensing,2003,7(6):498-503.[潘广东,王超,张卫国,等.SSM/I微波辐射计数据中国陆地覆盖特征季节变化分析[J].遥感学报,2003,7(6):498-503.]
[4]Che Tao,Li Xin,Gao Feng.Microwave Passive Remote Sensing Snow Depth and Snow Content in Tibet Plateau[J].Journal of Glaciology and Geocryology,2004,26(3):363-368.[车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.]
[5]Ulaby  F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive,Vol.III -- Volume Scattering and Emission Theory,Advanced Systems and Applications[M].Massachusetts:Artech House,Inc,1986.
[6]Jones A S,Vonder Haar T H.Passive Microwave Remote Sensing of Cloud Liquid Water over Land Regions[J].Journal of Geophysical Research,1990,95:16673-16683.
[7]Ruston R C,Vonder Haar T H.Characterization of Summertime Microwave Emissivity from the Special Sensor Microwave Imager over the Conterminous United States[J].Journal of Geophysical Research,2004,109,D19103,doi:10.1029/2004JD004890.
[8]Mao Kebiao,Shi Jiancheng,Li Zhaoliang,et al.Using Passive Microwave AMSR Data to Retrieve the Surface Temperature and Emissivity[J].Remote Sensing of National Land Resource,2005,(3):14-18.[毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,(3):14-18.]
[9]He Wenying,Chen Hongbin.The Characteristics of Microwave Emissivity over Land of Chinese Jianghuai-Huanghuai Region[J].Remote Sensing Technology and Application,2009,24(3),297-303.[何文英,陈洪滨.中国江淮、黄淮地区陆面微波比辐射率的变化特征[J].遥感技术与应用,2009,24(3),297-303.]
[10]Prigent C,Rossow W B,Matthews E.Global Maps of Microwave Land Surface Emissivities:Potential for Land Surface Characterization[J].Radio Science,1998,33:745-751.
[11]Prigent C,Aires F,Rossow W B,et al.Sensitivity of Satellite Microwave and Infrared Observations to Soil Moisture at a Global Scale:Relationship of Satellite Observations to In-situ Soil Moisture Measurements[J].Journal of Geophysical Research,2005,110,D07110,doi:10.1029/2004JD005087.
[12]Wan Z,Dozier J.A Generalized Split-window Algorithm for Retrieving Land-surface Temperature from Space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34:892-905.
[13]Wan Z,Zhang Y,Zhang Q,et al.Quality Assessment and Validation of the MODIS Global Land-surface Temperature[J].International Journal of Remote Sensing,2004,25(1),261-274.
[14]Liu G S.A Fast and Accurate Model for Microwave Radiance Calculations[J].Journal of Meteorological Society of Japan,1998,76:335-342.

[1] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[2] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[3] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[4] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[5] 黄田进,梁丁丁,贾立,张静潇,卢静,周杰. 青藏高原地区湖泊面积插补迭代自动提取#br#[J]. 遥感技术与应用, 2017, 32(2): 289-298.
[6] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[7] 安培浚,高峰,王立伟. 青藏高原冰川、积雪与地质灾害空间观测研究态势分析[J]. 遥感技术与应用, 2016, 31(6): 1223-1230.
[8] 胡同喜,赵天杰,施建成,谷金枝. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用, 2016, 31(5): 919-924.
[9] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[10] 王玉丹,南卓铜,陈浩,吴小波. 基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究[J]. 遥感技术与应用, 2016, 31(3): 607-616.
[11] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[12] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[13] 肖林,车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
[14] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[15] 陈洁,武胜利. MWRI与AMSR-亮温数据在极地冰盖区的对比分析[J]. 遥感技术与应用, 2014, 29(5): 752-760.