Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (2): 296-304    DOI: 10.11873/j.issn.1004-0323.2012.2.296
综述     
海岸带滩涂资源遥感应用研究进展
陈 勇
(上海市地质调查研究院,上海 200072)
Advance of Remote Sensing Application to Tidal Flat Resource Monitoring in Coastal Zone
Chen Yong
(Shanghai Institute of Geological Survey,Shanghai 200072,China)
 全文: PDF(1161 KB)  
摘要:

海岸带滩涂环境复杂多变,进入性、通达性差。遥感技术因宏观、快速、综合、高频、动态和经济等突出优势,在海岸带滩涂资源动态监测中应用前景广阔。回顾了近年来国内外遥感技术在海岸带滩涂应用中的研究进展,主要包括海岸线提取、潮滩冲淤分析、近岸水深调查、悬浮泥沙反演以及潮滩环境监测等领域。详细论述了航空遥感、卫星光学遥感、微波以及激光等遥感技术在这些领域应用中的技术原理与方法,对近年来最新应用成果以及存在的主要问题进行了分析。指出要进一步提升遥感技术在海岸带滩涂研究领域的应用能力,需要加强开展多源数据的融合、高光谱数据的信息挖掘、微波与激光雷达数据处理等方面的研究。

关键词: 遥感海岸带滩涂    
Abstract:

Along with the increasing development of urbanization,tidal flat is now serving as the most important resources of land reserves for coastal cities.As a sensitive belt of sea and land interaction,silt tidal flat is characterized as muddy surfaces,densely covered and frequently varied tidal creeks.Therefore,the traditional field observation has been restricted by the difficulty of access,however,the development of remote sensing techniques  make it possible for the coastal investigator to monitor the dynamic changes of coastal zone at low cost and in an efficient way.This paper reviewed the current state of the use of remote sensing in estuaries and coastal tidal flat.Recent advances of four main application aspects including shoreline extraction,retrieval and analysis of elevation at mudflat,bathymetry and surface suspended sediment concentration retrieval are introduced.To date,the most common remote sensed techniques used in coastal zone can be classified into four categories:photogrammetry,satellite optical remote sensing,SAR as well as Lidar.Through systematical analyzing the mechanism,technical characteristics and advantages and shortages of the four categories techniques,the author finds that despite these considerable advances have been made,lack of suitable remote sensing data and not-perfect data processing methods are the remaining challenges to impede the improvement of survey accuracy in coastal zone.In order to improve this situation,it is to suggest that future studies should focus on the study of combination of different remote sensed information,hyperspectral data mining and data processing methods on SAR and Lidar data.

Key words: Remote sensingoastal zone    Tidal flat
收稿日期: 2011-06-03 出版日期: 2013-01-23
:  TP 79  
基金资助:

国家公益性行业科研专项“典型海岸带地质环境监测关键技术与评价方法”(201011019),上海市规划和国土资源管理局科研项目“上海市后备土地资源动态监测体系与应用研究”(Gtz20090012)。

作者简介: 陈 勇(1982-),男,湖北荆州人,博士,工程师,主要从事海岸带遥感\,城市地质等方面的研究。Email:chenyongcugb@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈 勇. 海岸带滩涂资源遥感应用研究进展[J]. 遥感技术与应用, 2012, 27(2): 296-304.

Chen Yong. Advance of Remote Sensing Application to Tidal Flat Resource Monitoring in Coastal Zone. Remote Sensing Technology and Application, 2012, 27(2): 296-304.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.2.296        http://www.rsta.ac.cn/CN/Y2012/V27/I2/296

[1]Cracknell A P.Remote Sensing Techniques in Estuaries and Coastal Zones-an Update[J].International Journal of  Remote Sensing,1999,20:485-496.
[2]Ryu J H,Won J S,Min K D.Waterline Extraction from Landsat TM Data in a Tidal Flat,a Case Study in Gomso Bay,Korea[J].Remote Sensing of  Environment,2002,83:442-456.
[3]Zhang Ying,Zhang Dong,Wang Yanjiao,et al.Study of Remote Sensing-based Bathymetric Method in Sand-containing Water Bodies[J].Acta Oceanologica Sinica,2008,30(1):53-57.[张鹰,张东,王艳姣,等.含沙水体水深遥感方法的研究[J].海洋学报,2008,30(1):52-57.]
[4]Xu Junjie,Chen Yong.Study of Tidal Flat Reclamation at Eastern Nanhui based on RS and GIS[J].Shanghai Land and Resources,2011,32(3):18-22.[徐俊杰,陈勇.基于RS与GIS的南汇东滩围垦研究[J].上海国土资源,2011,32(3):18-22.]
[5]Li X J,Damen Michiel C J.Coastline Change Detection with Satellite Remote Sensing for Environmental Management of the Pearl River Estuary,China[J].Journal of Marine System,2010,82:54-61.
[6]Rainey M P,Tyler A N ,Gilvear D J,et al.Mapping Intertidal Estuarine Sediment Grain Size Distributions through Airborne Remote Sensing[J].Remote Sensing of Environment,2003,86:480-490.
[7]Volpe V,Silvestri S ,Marani  M.Remote Sensing Retrieval of Suspended Sediment Concentration in Shallow Waters[J].Remote Sensing of Environment,2011,115:44-54.
[8]Malthus T J,Mumby P.Remote Sensing of Coastal Zone:An Overview and Priorities for Future Research[J].International Journal of Remote Sensing,2003,24(13):2805-2815.
[9]Pan Delu,Wang Difeng.Advances in the Science of Marine Optical Remotes Sensing Application in China[J].Advances in Earth Science,2004,19(4):506-512.[潘德炉,王迪峰.我国海洋光学遥感应用科学研究的新进展[J].地球科学进展,2004,19(4):506-512.]
[10]Han Zhen,Jin Yaqiu,Yun Caixing.Remote Sensing Application to Monitoring Resources and Environment in Chinas Coastal Zone and Nearby Ocean[J].Remote Sensing Information,2006,(5):64-71.[韩震,金亚秋,恽才兴.我国海岸带及其近海资源环境监测的遥感技术应用[J].遥感信息,2006,(5):64-71.]
[11]Gens R.Remote Sensing of Coastlines:Detection,Extraction and Monitoring[J].Journal of Remote Sensing,2010,31(7):1819-1836.
[12]Liu H ,Sherman D,Gu S.Automated Extraction of Shorelines from Airborne Light Detection and Ranging Data and Accuracy Assessment based on Monte Carlo Simulation [J].Journal of Coastal Research,2007,23:1359-1369.
[13]Frazier P S,Page K J.Water Body Detection and Delineation with Landsat TM Data[J].Photogrammetric Engineering and Remote Sensing,2000,66(12):1461-1467.
[14]Peter J M ,Edwards A J.Mapping Marine Environment with IKONOS Imagery:Enhanced Spatial Resolution Can Deliver Greater Thematic Accuracy[J].Remote Sensing of Environment,2002,82:248-257.
[15]Foody G M ,Muslim A M,Atkinson P M.Super-resolution Mapping of the Waterline from Remotely Sensed Data[J].International Journal of Remote Sensing,2005,26:5381-5392.
[16]Yang Xiaomei,Gong Jianming,Gao Zhenyu.The Research on Extracting Method of Microscale Remote Sensing Information Combination and Application in Coastal Zone[J].Acta Oceanologica Sinica,2009,31(2):40-48.[杨晓梅,龚剑明,高振宇.海岸带遥感微尺度信息及组合挖掘提取和方法应用研究[J].海洋学报,2009,31(2):40-48.]
[17]Zhang Hansong.The Research of Object-based Remote Sensing Change Detection for Coastal Surface[D].Hangzhou:Zhejiang University,2010.[张汉松.基于对象的海岸带地物变化遥感检测技术的研究[D].杭州:浙江大学,2010.]
[18]Gong Peng.Some Essential Questions in Remote Sensing Science and Technology[J].Journal of Remote Sensing,2009,13(1):13-18.[宫鹏.遥感科学与技术中的一些前沿问题[J].遥感学报,2009,13(1):13-18.]
[19]Bruce W P,Carol A J.Mapping an Invasive Plant,Phragmites Australis,in Coastal Wetlands Using EO-1 Hyperion Hyperspectral Sensor[J].Remote Sensing of Environment,2007,108:74-81.
[20]Henderson F M,Lewis A J.Principles and Applications of Imaging Radar [M].New York:Wiley,1998.
[21]Niedermeier A,Romanefssen E,Lehner S.Detection of Coastlines in SAR Images Using Wavelet Methods[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38:2270-2281.
[22]Han Zhen,Jin Yaqiu.Shoreline Extraction of Silty Tidal Flat in Yangtze Estuary Using Satellite Infrared and Microwave Multi-source Remote Sensing Data[J].Progress in Natural Science,2005,15(8):1000-1006.[韩震,金亚秋.星载红外与微波多源遥感数据提取长江口淤泥质潮滩水边线信息[J].自然科学进展,2005,15(8):1000-1006.]
[23]Kim D J,Moon W M ,Park S E,et al.Dependence of  Waterline Mapping on Radar Frequency Used for SAR Images in Intertidal Area[J].IEEE Geoscience and Remote Sensing Letters,2007,4:269-273.
[24]Brock J C,Wright C W,Salienger A H,et al.Basis and Methods of NASA Airborne Topographic Mapper Lidar Surveys for Coastal Studies[J].Journal of Coastal Research,2002,18:1-13.
[25]Mason D,Hill D,Davenport I,et al.Improving Inter-tidal Digital Elevation Models Constructed by the Waterline Technique[C]// Proceedings Third ERS Symposium,Florence:ERS Publications Division,1997:1079-1082.
[26]Ye Xiusong.Research on Principle and Data Processing Methods of Airborne Laster Bathemetric Techniques[D].Zhengzhou:PLA Information Engineering University,2010.[叶修松.机载激光水深探测技术基础及数据处理方法研究[D].郑州:解放军信息工程大学,2010.]
[27]Liu Jingnan,Zhang Xiaohong.Progress of Airborne Laser Scanning Altimetry[J].Geomatics and Information Science of Wuhan University,2003,28(2):132-137.[刘经南,张小红.激光扫描测高技术的发展与现状[J].武汉大学学报(信息科学版),2003,28(2):132-137.]
[28]Zheng Zongsheng,Zhou Yunxuan,Liu Zhiguo,et al.Dem Reconstruction based on Hydrodynamic Model and Waterline Method [J].Resources and Environment in the Yangtze Basin,2008,17(5):754-760.[郑宗生,周云轩,刘志国,等.基于水动力模型及遥感水边线方法的潮滩高程反演[J].长江流域资源与环境,2008,17(5):754-760.][29]Shen Jiashuang,Zhai Jingsheng,Guo Haitao.Study on Coastline Extraction Technology[J].Hydrographic Surveying and Charting,2009,29(6):74-77.[申家双,翟京生,郭海涛.海岸线提取技术研究[J].海洋测绘,2009,29(6):74-77.]
[30]Zhao B,Guo H Q,Yan Y,et al.A Simple Waterline Approach for Tidelands Using Multi-temporal Satellite Images:A Case Study in the Yangtze Delta[J].Estuarine,Coastal and Shelf Science,2008,77:134-142.
[31]Shen Fang,Hao Ang,Wu Jianping,et al.A Remotely Sensed Approach on Waterline Extraction of Silty Tidal Flat for DEM Construction,a Case Study in Jiuduansha Shoal of Yangtze River[J].Acta Geodaetic Cartorgraphica Sinica,2008,37(1):101-107.[沈芳,郝昂,吴建平,等.淤泥质潮滩水边线提取的遥感研究及DEM构建[J].测绘学报,2008,37(1):101-107.]
[32]Lyzenga D R.Passive Remote Sensing Techniques For Mapping Water Depth Bottom Features[J].Applied Optics,1978,17:379-383.
[33]Lafon V,Froidefond J M,Lahet F,et al.SPOT Shallow Water Bathymetry of a Moderately Turbid Tidal Flat based on Field Measurements[J].Remote Sensing of Environment,2002,81:136-148.
[34]Tian Qingjiu,Wang Jingjing,Du Xindong.Study on Water Depth Extraction from Remote Sensing Imagery in Jiangsu Coastal Zone[J].Journal of Remote Sensing,2007,11(3):373-379.[田庆久,王晶晶,杜心栋.江苏近海岸水深遥感研究[J].遥感学报,2007,11(3):373-379.]
[35]De L G.The Observation of Tidal Patterns,Currents,and Bathymetry with SLAR Imagery of the Sea[J].IEEE Journal Ocean Engineering,1981,6(4):124-129.
[36]Alpers W,Hennings I A.Theory of the Imaging Mechanism of Underwater Bottom Topography by Real and Synthetic Aperture Radar[J].Journal of Geophysical Research,1984,89:10529-10546.
[37]Huang Weigen,Gao Manna,Zhou Changbao,et al.Spaceborne SAR Observations of Underwater Bottom Topography off the North Coast of Penglai[J].Donghai Marine Science,1996,14(1):52-57.[黄韦艮,高曼娜,周长宝,等.蓬莱附近海区水下地形的星载合成孔径雷达遥感[J].东海海洋,1996,14(1):52-56.]
[38]Calkoen C J,Hesselmans G,Wensink G,et al.The Bathymetry Assessment System:Efficient Depth Mapping in Shallow Seas Using Radar Images[J].International Journal of Remote Sensing,2001,22:2973-2998.
[39]Guo Huadong.Radar Observations of the Theory and Application [M].Beijing:China Science and Technology Press,1996.[郭华东.雷达对地观测理论与应用[M].北京:中国科学技术出版社,1996.]
[40]Fan Kaiguo,Huang Weigen,He Mingxia,et al.Progress on Remote Sensing of the Shallow Sea Bottom Topography by SAR[J].Remote Sensing Technology and Application,2008,23(4):479-485.[范开国,黄韦艮,贺明霞,等.SAR浅海水下地形遥感研究进展[J].遥感技术与应用,2008,23(4):479-485.]
[41]Chen Weibiao,Lu Yutian,Chu Chunlin,et al.Analyses of Depth Accuracy for Airborne Laser Bathymetry[J].Chinese Journal of Laster,2004,30(1):101-104.[陈卫标,陆雨田,褚春霖,等.机载激光水深测量精度分析[J].中国激光,2004,30(1):101-104.
[42]Guenther G C,Cunningham A G,LaRocque P E,et al.Meeting the Accuracy Challenge in Airborne Lidar Bathymetry[C]//The 20th EARSeL Symposium:Workshop on Lidar Remote Sensing of Land and Sea.Dresden,Germany,European Association of Remote Sensing Laboratories,2000,6:16-17.
[43]Gordon H R,Morel A.Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery[C]//A Review,Lecture Notes on Costal and Estuarine Studies,New York,1983:114.
[44]Miller R L.Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters[J].Remote sensing of Environment,2004,32:59-266.
[45]Li J,Gao S,Wang Y P.Delineating Suspended Sediment Concentration Patterns in Surface Waters of the Changjiang Estuary by Remote Sensing Analysis[J].Acta Oceanologica Sinica,2010,29(4):38-47.
[46]Doxoran D,Froidefond J M,Lavender S,et al.Spectral Signature of Highly Turbid Waters,Application with SPOT Data to Quantify Suspended Particulate Matter Concentration[J].Remote Sensing of Environment,2002,81:149-161.
[47]Li Sihai,Yun Caixing.A Study on the Quantitative Model of the Suspended Sediment Concentration from the Meteorological Satellite Imagery[J].Journal of Remote Sensing,2001,5(2):154-159.[李四海,恽才兴.河口表层悬浮泥沙气象卫星遥感定量模式研究[J].遥感学报,2001,5(2):154-159.]
[48]Jiang Guangjia,Liu Dianwei,Song Kaishan,et al.Estimation of Total Suspendecl Matter Concentration in Shitoukoumen Reservoir based on a Semi-empirical[J].Remote Sensing Technology and Application,2010,25(1):107-111.[姜广甲,刘殿伟,宋开山,等.基于半分析模型的石头口门水库总量悬浮物浓度反演研究[J].遥感技术与应用,2010,25(1):107-111.]
[49]Choi J K,Ryu J H, Lee Y K,et al.Quantitative Estimation of Intertidal Sediment Characteristics Using Remote Sensing and GIS[J].Estuarine,Coastal and Shelf Science,2010,88:125-134.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.