Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (4): 640-646    DOI: 10.11873/j.issn.1004-0323.2013.4.640
图像与数据处理     
遥感图像薄云雾的梯度改正
姜澒月1,周坚华2
(1.华东师范大学地理系,上海 200241;
2.华东师范大学地理信息科学教育部重点实验室,上海 200062)
Removing Thin Cloud Cover from Remote Sensing Images
Jiang Hongyue1,Zhou Jianhua2
(1.Department of Geography,East China Normal University,Shanghai 200241,China;
2.Key Lab of Geographical Information Science,Ministry of Education,
East China Normal University,Shanghai 200062,China)
 全文: PDF(4038 KB)  
摘要:

去除遥感图像薄云/雾干扰是遥感图像处理的一个经常性任务。研究发现薄云干扰作为附加于图像信号上的低频干扰,通常表现为图像亮度增大和饱和度下降的信号变化。由于云雾厚度存在由中心向边缘的渐次变化,亮度和饱和度的附加增量也表现出相应的梯度变化。通过图像采样和云雾分布场的统计相关分析,给出距离D与亮度V和饱和度S之间的非线性关系,逐点计算V和S的改正数,来达到去除云雾、恢复景物波谱特征的目的。并提出加入方向角的加权距离算法及简化算法。实验结果表明:该方法具有云雾改正效果好、采样可操作和工作量小、运算开销小等特点。

关键词: 遥感图像薄云干扰梯度改正光谱信号恢复    
Abstract:

Removing thin cloud/fog cover is one of regular tasks in remote sensing image processing.In this study,it is found that the effects from thin cloud cover to spectral signal usually have a performance of low-frequency characteristic and lead to both increased brightness V and reduced saturation S of the image signals.As the thickness of the cloud gradually changes from the center of cloud to the edge,the corrections for V and S also vary gradually.Therefore the relations between image distance D and S and between D and V divided by S  were obtained by image sample and regression analysis.And then through a pixel-by-pixel correction in both S and V with the two relations,the spectral signals can be recovered well.When added a parameter of orientation angle,these relations can also be used to remove cloud in an asymmetric cloudy field.It has been demonstrated by several tests that the spectral signals can be recovered quite well with above mentioned method and has a low calculating costs for sampling,regression and correction.

Key words: Remote sensing image    Thin cloud cover    Pixel-by-pixel correction    Spectral signal recovery
收稿日期: 2012-04-16 出版日期: 2013-08-14
:  TP 751  
基金资助:

国家自然科学基金委员会国家基础科学人才培养基金项目(J1103412),国家自然科学基金项目“城镇植物固碳模型的遥感驱动方法”(41071275)。

通讯作者: 周坚华(1956-),女,上海人,副教授,主要从事遥感图像识别、环境和生态定量遥感研究。E-mail:jhzhou@geo.ecnu.edu.cn。    
作者简介: 姜澒月(1990-),女,山东青岛人,主要从事遥感图像识别、生态遥感研究。E-mail:nageshm@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姜澒月
周坚华

引用本文:

姜澒月,周坚华. 遥感图像薄云雾的梯度改正[J]. 遥感技术与应用, 2013, 28(4): 640-646.

Jiang Hongyue,Zhou Jianhua. Removing Thin Cloud Cover from Remote Sensing Images. Remote Sensing Technology and Application, 2013, 28(4): 640-646.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.4.640        http://www.rsta.ac.cn/CN/Y2013/V28/I4/640

[1]Zhang Bo,Ji Minhe,Shen Qi.Wavelet-based Cloud Removal from High-resolution Remote Sensing Data:An Experiment with QuickBird Imagery[J].Remote Sensing Information Applications of Remote Sensing,2011,(3):38-43.[张波,季民河,沈琪.基于小波变换的高分辨率快鸟遥感图像薄云去除[J].遥感信息:遥感应用版,2011,(3):38-43.]

[2]Song M,Civco D L.A Knowledge-based Approach for Reducing Cloud and Shadow[C]//Proceedings of 2002 ASPRS-ACSM Annual Conference and FIG 22 Congress.Washington,D.C,2002:22-26.

[3]Guo Fan,Cai Zixing,Xie Bin,et al.Review and Prospect of Image Dehazing Techniques[J].Journal of Computer Applications,2010,30(9):2417-2421.[郭璠,蔡自兴,谢斌,等.图像去雾技术研究综述与展望[J].计算机应用,2010,30(9):2417-2421.]

[4]Rui Yibin,Li Peng,Sun Jintao.Method of Removing Fog Effect from Images[J].Journal of Computer Applications,2006,26(1):154-156.[芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156.]

[5]Li Yuguang,He Feng,Wang Hengyu.Removing the Thin Clouds of Remote Sensing Images[J].Technology and Life,2012,(14):232-235.[李宇光,何峰,王恒宇.除去遥感影像薄云雾的探讨[J].科技与生活,2012,(14):232-235.]

[6]Han Nianlong,Liu Chuang,Zhuang Li,et al.Removing Thin Cloud by Combing Wavelet Transforms and Homomorphic Filter in the CBERS-02B Image[J].Journal of Jilin University(Earth Science Edition),2012,42(1):275-279.[韩念龙,刘闯,庄立,等.基于不同小波变换与同态滤波结合的CBERS-02B卫星CCD图像的薄云去除[J].吉林大学学报(地球科学版),2012,42(1):275-279.]

[7]Zhou Liya,Qin Zhiyuan,Yin Xiaolong,et al.Analysis of Applying Wavelet Transformation to Thin Cloud and Mist Reduction of Remote Sensing Images[J].Journal of Information Engineering University,2011,12(6):708-712.[周丽雅,秦志远,殷小龙.小波变换在遥感图像薄云处理中的应用分析[J].信息工程大学学报,2011,12(6):708-712.]

[8]Zhu Xifang,Wu Feng,Tao Chunkan.A New Algorithm of Cloud Removing for Optical Images based on Wavelet Threshold Theory[J].Acta Photonica Sinica,2009,38(12):3312-3317.[朱锡芳,吴峰,陶纯堪.基于小波阈值理论的光学图像去云处理新算法[J].光子学报,2009,38(12):3312-3317.]

[9]Kim J Y,Kim L S,Hwang S H.An Advanced Contrast Enhancement Using Partially Overlapped Sub-block Histogram Equalization[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(4):475-484.

[10]He K M,Sun J,Tang X O.Single Image Haze Removal Using Dark Channel Prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.New York,USA,2009,1956-1963.

[11]Bao Quanlei.Color Image Segmentation based on HSV Space[J].Software Guide,2010,9(7):171-172.[包全磊.基于HSV空间的彩色图像分割软件导刊[J].软件导刊,2010,9(7):171-172.]

[12]Yang C C,Rodriguez J J.Efficient Luminance and Saturation Processing Techniques for Bypassing Color Coordinate Transformation[C]//Proceedings of IEEE International Conference on System,Man and Cybernetics,1995,1(1):667-672.

[13]Zhou Jianhua.Remote Sensing Image Analysis and Spatial Data Mining[M].Shanghai:Shanghai Scientific and Technological Education Press,2010.[周坚华.遥感图像分析与空间数据挖掘[M].上海:上海科技教育出版社,2010.]

[14]Wang Ping,Zhang Chun,Luo Yingxin.Fast Alorithm to Enhance Contrast of Fog-degraded Images[J].Computer Applications,2006,26(1):152-154.[王萍,张春,罗颖昕.一种雾天图像对比度增强的快速算法[J].计算机应用,2006,26(1):152-154.]

[15]Kong K S,Chen M X,Wang Y W.Effects of Display Medium and Luminance Contrast on Memory Performance and EEG Response[J].International Journal of Industrial Ergonomics,2005,35(9):797-805.

[16]Zhu Shuangzhi,Wen Jianguo,Yang Dong,et al.New Enhancement Algorithm for Remote Sensing Image based on Retinex Theory[J].Remote Sensing Technology and Application,2012,27(4):549-554.[朱双志,文建国,杨冬,等.基于Retinex理论的新型遥感图像增强算法[J].遥感技术与应用,2012,27(4):549-554.]

[17]Ke Jing.Grayscale and Color Image Contrast Enhancement Method for PDE Research[D].Xi’an:The University of Northwest,2008.[克兢.灰度和彩色图像对比度增强的PDE方法研究[D].西安:西北大学,2008.]

[18]Shannon C E.A Mathematical Theory of Communication[J].Bell System Technical,1948,(27):379-423,623-658.

[1] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[2] 王俊,秦其明,叶昕,王建华,秦雪彬,杨绣丞. 高分辨率光学遥感图像建筑物提取研究进展[J]. 遥感技术与应用, 2016, 31(4): 653-662.
[3] 张从梅,孙权森,王超,封磊,顾一禾. 基于非局部自相似性的遥感图像稀疏去噪算法[J]. 遥感技术与应用, 2016, 31(4): 739-747.
[4] 赵永光,李传荣,马灵玲,唐伶俐,王宁. 一种遥感图像太阳—观测几何归一化方法[J]. 遥感技术与应用, 2016, 31(2): 260-266.
[5] 肖新耀,许宁,尤红建. 一种基于à trous小波和联合稀疏表示的遥感图像融合方法[J]. 遥感技术与应用, 2015, 30(5): 1021-1026.
[6] 苏腾飞,李洪玉. 一种两阶段区域生长的遥感图像分割算法[J]. 遥感技术与应用, 2015, 30(3): 476-485.
[7] 侯鹏洋,季艳,高峰,胡蕾. 一种基于SIFT特征的快速逐层遥感图像配准方法[J]. 遥感技术与应用, 2014, 29(5): 873-877.
[8] 万智萍. 结合方向小波的多光谱与全色遥感图像融合算法[J]. 遥感技术与应用, 2014, 29(4): 660-668.
[9] 李青松,覃锡忠,贾振红,杨杰,胡英杰. 基于非下采样Shearlet和几何结构的遥感图像无监督变化检测[J]. 遥感技术与应用, 2014, 29(3): 482-488.
[10] 欧阳能钧,李伟彤,韦蔚,潘晴. 基于SIFT与Contourlet变换的高分辨遥感图像配准[J]. 遥感技术与应用, 2013, 28(1): 58-64.
[11] 骆仁波,皮佑国,廖文志. 超光谱遥感图像有监督LPP特征提取研究[J]. 遥感技术与应用, 2012, 27(6): 850-856.
[12] 丁胜锋,孙劲光,陈东莉,姜晓林. 基于模糊双支持向量机的遥感图像分类研究[J]. 遥感技术与应用, 2012, 27(3): 353-358.
[13] 陈超,秦其明,池长艳,蒋洪波,刘明超. 一种Curvelet变换和IHS变换相结合的遥感图像融合方法[J]. 遥感技术与应用, 2011, 26(4): 444-449.
[14] 周 全,张 荣,尹 东. 基于高斯金字塔的遥感云图多尺度特征提取[J]. 遥感技术与应用, 2010, 25(5): 604-608.
[15] 张九星, 黑保琴, 李盛阳, 李绪志. 基于变分方法的遥感图像去噪研究[J]. 遥感技术与应用, 2010, 25(4): 560-566.