Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (1): 130-137    DOI: 10.11873/j.issn.100-|0323.2014.1.0130
图像与数据处理     
基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价
曹林1,许子乾1,代劲松1,王靖琦1,羌鑫林2,佘光辉1
(1.南京林业大学森林资源与环境学院,江苏 南京 210037;
2.江苏省测绘工程院,江苏 南京 210013)
Method Optimization and Accuracy Evaluation of Terrain and Buildings Extraction based on LiDAR and CCD Data
Cao Lin1,Xu Ziqian1,Dai Jinsong1,Qiang Xinlin2,She Guanghui3
(1.Nanjing Forestry University,Nanjing 210037,China;
2.Jiangsu Province Surveying & Mapping Engineering Institute,Nanjing 210013,China)
 全文: PDF(3842 KB)  
摘要:

借助机载小光斑激光雷达点云数据,采用Kraus滤波法结合增强Canny算子优化提取数字高程模型,然后结合LiDAR数据中提取的nDSM和粗糙度特征,以及CCD数据中获得的光谱属性和几何属性,应用多源特征融合面向对象影像分类方法,以提高城市环境下遥感分类的可靠性和建筑实体信息提取精度。结果表明:DEM估测值变异解释能力达到96%,其均方根误差1.15 m,拟合的直线紧贴1∶1线;同时,结合粗糙度、光谱信息和形态指数等信息分类的方法不仅缓解了分类“噪声”,降低了错分现象,且精度较高;研究区内建筑的面积决定系数大多高于0.7,高度信息的估测值变异解释能力也均达到92%以上,表明基于多源特征融合的面向对象分类方法结果可靠且对建筑的三维结构参数提取精度高。

关键词: 机载激光雷达CCDDEM地形建筑信息提取    
Abstract:

In this paper,Kraus filtering algorithm and enhanced Canny arithmetic operators were applied to extract digital elevation models by small foot\|print LiDAR point clouds;in order to enhance the urban remote sensing classification reliability and ground features extraction accuracy,the buildings and other features were extracted by objected-orientated classification method with merging multi\|sources of spatial data,through the integration of LiDAR-extracted nDSM & roughness index and CCD-derived spectral & geometrical attributes.The result demonstrated that:the estimated DEM accounted for around 96% of the variation with a standard error of 1.15m,and the two estimates were not significantly different from a 1∶1 relationship;meanwhile,the information classification method,which integrates roughness index,spectral information and shape index,could not only relief the noise of classification and reduce the classification error,but also reach a relatively high accuracy.The coefficiency of  determination of the buildings areas was almost higher than 0.7,and the explanation capability of the estimated buildings heights accounted for above 92% of the variation,which showed that the result of the objected\|orientated classification by merging multi-sources was reliable for extracting 3D structure parameters of the building with a high accuracy.

Key words: Airborne LiDAR    CCD    DEM    Terrain    Building    Information extraction
收稿日期: 2013-04-21 出版日期: 2014-05-14
:  TN 958.98  
基金资助:

国家“863”计划项目(2012AA102002-4),江苏高校优势学科建设工程资助项目。

作者简介: 曹林(1983-),男,江苏姜堰人,讲师,主要从事主动遥感技术应用及模型集成研究。Email:ginkgocao@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曹林,许子乾,代劲松,王靖琦,羌鑫林,佘光辉. 基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价[J]. 遥感技术与应用, 2014, 29(1): 130-137.

Cao Lin,Xu Ziqian,Dai Jinsong,Qiang Xinlin,She Guanghui. Method Optimization and Accuracy Evaluation of Terrain and Buildings Extraction based on LiDAR and CCD Data. Remote Sensing Technology and Application, 2014, 29(1): 130-137.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.100-|0323.2014.1.0130        http://www.rsta.ac.cn/CN/Y2014/V29/I1/130

[1]Zhang Xiaohong,Liu Jingnan,Li Zhenghang.Filtering and Cla-ssification of 3D Airborne Laser Scanning Altimetry Data[J].Geomatics and Information Science of Wuhan University,2002,27(Sup.):181-183.[张小红,刘经南,李征航.3D机载激光扫描测高数据滤波和分类研究[J].武汉大学学报:信息科学版,2002,27(增刊):181-183.] 

[2]Zhou Xintie.Earth Observation Technology and Digital City[M].Beijing:Science Press,2001.[周心铁.对地观测技术与数字城市[M].北京:科学出版社,2001.]

[3]You Hongjian.Fast Processing Technology of Airborne 3D Remote Sensing Data and Man-made Building Extraction from 3D Data[D].Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences,2001.[尤红建.基于三维遥感数据的快速处理与建筑物提取研究[D].北京:中国科学院遥感应用研究所,2001.]

[4]Cao Lin,She Guanghui,Dai Jinsong,et al.Status and Prospects of the LiDAR-based Forest Biomass Estimation[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(3):163-169.[曹林,佘光辉,代劲松,等.激光雷达技术估测森林生物量的研究现状及展望[J].南京林业大学学报(自然科学版),2013,37(3):163-169.]

[5]Matikainen L,Hyyppa J,Kaartinen H.Comparison between First Pulse and Last Pulse Laser Scanner Data in the Automatic Detection of Buildings[J].Photogrammetric Engineering and Remote Sensing,2009,75:133-146.

[6]Li Qingquan,Li Bijun,Chen Jing.Research on Laser Range Scanning and Its Application[J].Journal of Wuhan Technical University of Surveying and Mapping,2000,25(5):387-392.[李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报,2000,25(5):387-392.]

[7]Zeng Qihong.Airborne Lidar Point Cloud Data Processing and 3D Building Reconstruction[D].Shanghai:Shanghai University,2009.[曾齐红.机载激光雷达点云数据处理与建筑物三维重建[D].上海:上海大学,2009.]

[8]Goodwin N R,Coops N C,Tooke T R,et al.Characterizing Urban Surface Cover and Structure with Airborne Lidar Technology[J].Canadian Journal of Remote Sensing,2009,35(3):297-309.

[9]Brenner C,Haala N.Extracting of Building and Trees in Urban Environments[J].ISPRS Journal of Photogrammetry & Remote Sensing,1999,54:130-137.

[10]Lillesand T,Kiefer R W,Chipman J.Remote Sensing and Image Interpretation(6th Edition)[M].New York:Wiley Desktop Edition,2008:701-802.

[11]Mathieu R,Aryal J,Chong A K.Object-based Classification of IKONOS Imagery for Mapping Large-scale Vegetation Communities in Urban Areas[J].Sensors,2007,7(11):2860-2880.

[12]Kilian J,Haala N,Englich M.Capture and Evaluation of Airborne Laser Scanner Data[C]// International Archives of Photogrammetry and Remote Sensing,Vienna,Austria,1996.

[13]Canny J.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.

[14]Mallat S,Zhong S.Characterization of Signals from Multi-Scale Edges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(7):710-732.

[15]Zhao Lijian,Cheng Xinwen,Li Yingcheng,et al.Accuracy Check and Analysis of LiDAR Elevation Data[J].Geospatial Information,2009,7(1):58-60.[赵礼剑,程新文,李英成,等.机载LiDAR 点云高程数据精度检核及误差来源分析[J].地理空间信息,2009,7(1):58-60.]

[16]Yang Yun,Sui Lichun.Object-oriented Classification of LiDAR Data based on Multi-feature Fusion[J].Bulletin of Surveying and Mapping,2010,(8):11-14.[杨耘,隋立春.面向对象的LiDAR数据多特征融合分类[J].测绘通报,2010,(8):11-14.]

[17]Schenk T,Csatho B.Fusion of LiDAR Data and Aerial Imagery for a More Complete Surface Description[C]//International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences(Vol.XXXIV/3A).Graz,Austria,2002.310 - 317.

[18]Brunn A,Weidner U.Extracting Buildings from Digital Surface Models[C]//International Archives of Photogrammetry and Remote Sensing,1997.

[1] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[2] 丁哲,汪小钦,邬群勇. 遥感影像空间分辨率对城市建筑物高度估算精度的影响[J]. 遥感技术与应用, 2018, 33(3): 418-427.
[3] 虢韬,沈平,时磊. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 2018, 33(3): 530-535.
[4] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[5] 梁茜茜,张汉德,孙根云,王鹏. 基于机载激光雷达数据的海岸带水域提取方法[J]. 遥感技术与应用, 2018, 33(1): 136-142.
[6] 曹晓晨,尤红建,刘佳音,王峰. 基于误差建模的SRTM高程精度提升方法研究[J]. 遥感技术与应用, 2017, 32(5): 801-808.
[7] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[8] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[9] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[10] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[11] 吕利利,颉耀文,黄晓君,张秀霞,李汝嫣. 基于CART决策树分类的沙漠化信息提取方法研究[J]. 遥感技术与应用, 2017, 32(3): 499-506.
[12] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[13] 郝莹莹,罗小波,仲波,杨爱霞. 基于植被分区的中国植被类型分类方法[J]. 遥感技术与应用, 2017, 32(2): 315-323.
[14] 王琳,武虹. 基于DEM的遗址域定量算法及可获取耕地统计[J]. 遥感技术与应用, 2017, 32(2): 274-281.
[15] 何原荣,郑渊茂,潘火平,陈鉴知. 基于点云数据的复杂建筑体真三维建模与应用[J]. 遥感技术与应用, 2016, 31(6): 1091-1099.