Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (4): 675-680    DOI: doi:10.11873/j.issn.1004-0323.2014.4.0675
图像与数据处理     
顾及入射角的全波形激光雷达数据校正方法
刘梦华1,2,周梅1
(1.中国科学院光电研究院定量遥感信息技术重点实验室,北京 100094;
2.中国科学院大学,北京 100049)
Full-waveform LiDAR Data Correction with Incidence Angle
Liu Menghua1,2,Zhou Mei1
(1.Key Laboratory of Quantitative Remote Sensing Information Technology,
Academy of Opto-electronics,Chinese Academy of Sciences,Beijing 100094,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(3506 KB)  
摘要:

相比于传统激光雷达,全波形激光雷达以非常小的采样间隔记录激光回波的全部信息并以数字化存储,经过处理可以得到能够反映地物固有特性的潜在特征。在全波形激光雷达回波数据处理中,对波形数据的校正是波形分解和地物目标特征提取的关键步骤。针对激光雷达系统获取数据过程中同类型建筑物目标对不同入射方向激光反射的差异,提出了一种全波形激光雷达数据的后向散射截面校正方法,建立了顾及入射角的波形数据校正模型。采用机载小光斑全波形激光雷达数据对提出的校正方法进行验证,结果表明:该校正方法能够对同类型建筑物目标的波形数据的后向散射截面进行归一化校正,消除不同入射角对该类目标后向散射截面的影响,极大提高后续建筑物目标精细分类和特征提取等应用的精度。

关键词: 全波形激光雷达波形数据后向散射截面数据校正    
Abstract:

Compared with traditional LiDAR,Full-waveform LiDAR data can be digitally preserved in a very small sampling interval of the laser scattering echo pulse.Therefore the additional information reflecting the inherent characteristics of the surface features can be obtained after data processing.The accuracy of full\|waveform LiDAR data processing determines the effectiveness of target information acquisition.Among the data processing procedures,data correction is a key step to the waveform decomposition and target feature extraction.In this paper,a backscatter cross\|section correction model is proposed,which considers the differences of the same building reflection with different incidence angle.Airborne small footprint full\|waveform lidar data is used to verify the correction model.The results show that the backscatter cross\|section of building in same type can be normalization corrected by this correction model and the impact of different incidence angle is eliminated that improve the accuracy of applications such as building classification and feature extraction greatly.
 

Key words: Full-waveform LiDAR    Waveform data    Backscatter cross-section    Data correction
收稿日期: 2013-08-14 出版日期: 2014-09-19
:  TP 79  
基金资助:

国家重大专项项目“激光雷达数据处理技术”,中国科学院光电研究院创新项目“面向精细分类需求的全波形激光雷达数据处理与应用技术研究”,中国科学院光电研究院雏鹰计划“面向隐蔽目标点提取的全波形激光雷达数据处理”。

作者简介: 刘梦华(1990-),女,江西吉安人,硕士研究生,主要从事机载全波形激光雷达数据处理与应用。Email:liumenghua@aoe.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘梦华
周梅

引用本文:

刘梦华,周梅. 顾及入射角的全波形激光雷达数据校正方法[J]. 遥感技术与应用, 2014, 29(4): 675-680.

Liu Menghua,Zhou Mei. Full-waveform LiDAR Data Correction with Incidence Angle. Remote Sensing Technology and Application, 2014, 29(4): 675-680.

链接本文:

http://www.rsta.ac.cn/CN/doi:10.11873/j.issn.1004-0323.2014.4.0675        http://www.rsta.ac.cn/CN/Y2014/V29/I4/675

[1]Reitberger J,Krzystek P,Stilla U.Combined Tree Segmentation and Stem Detection Using Full-waveform LiDAR Data[C]//ISPRS Workshop on Laser Scanning 2007 and Silvilaser 2007,Finland,2007.

[2]Wagner W,Hollaus M,Briese,et al.3D Vegetation Mapping Using Small-footprint Full-waveform Airborne Laser Scanners[J].International Journal of Remote Sensing,2008,29(5):1433-1452.

[3]Zhou Mengwei,Liu Qinhuo,Liu Qiang,et al.A Method for Classification by Fusing Full-waveform Airborne Laser Scanning Data and Aerial Images[J].Remote Sensing Technology and Application,2010,25(6):821-827.[周梦维,柳钦火,刘强,等.全波形激光雷达和航空影像联合的地物分类[J].遥感技术与应用,2010,25(6):821-827.]

[4]Chehata N,Li G,Mallet C.Airborne LiDAR Feature Selection for Urban Classification Using Random Forests[C]//Laser Scanning 2009.IAPRS,France,2009.

[5]Alexander C,Tansey K,Kaduk J,et al.Backscatter Coefficient as an Attribute for the Classification of Full-waveform Airborne Laser Scanning Data In Urban Areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65:423-432.

[6]Hfle B,Hollaus M.Urban Vegetation Detection Using High Density Full-waveform Airborne LiDAR Data—Combination of Object-based Image and Point Cloud Analysis[C]//ISPRS TC VII Symposium-100 Years ISPRS,Vienna,IAPRS,2010.

[7]Li Qi,Ma Hongchao,Wu Jianwei,et al.Use of Small-footprint Scanning Airborne LiDAR to Estimate Forest Stand Characteristics[J].Forest Resources Management,2008,(1):74-81,102.[李奇,马洪超,邬建伟,等.机载小光斑LiDAR的森林参数评估[J].林业资源管理,2008,(1):74-81,102.]

[8]Zhou Mengwei,Liu Qinhuo,Liu Qiang,et al.Inversion for Crop Height by Small—Footprint—Waveform Airborne LiDAR[J].Transactions of the CSAE,2010,26(8):183-188.[周梦维,柳钦火,刘强,等.基于机载小光斑全波形LiDAR 的作物高度反演[J].农业工程学报,2010,26(8):183-188.]

[9]Heinzel J,Koch B.Exploring Full-waveform LiDAR Parameters for Tree Species Classification[J].International Journal of Applied Earth Observation and Geoinformation,2011,13:152-160.

[10]Li Xin,Li Xiaowen,Li Zengyuan,et al.Progresses on the Watershed Allied Telemetry Experimental Research (WATER)[J].Remote Sensing Technology and Application,2012,27(5):637-649.[李新,李小文,李增元,等.黑河综合遥感联合试验研究进展[J].遥感技术与应用,2012,27(5):637-649.]

[11]Chauve A,Vega C,Durrieu S,et al.Advanced Full-waveform LiDAR Data Echo Detection:Assessing Quality of Derived Terrain and Tree Height Models in An Alpine Coniferous Forest[J].International Journal of Remote Sensing,2009,30(19):5211-5228.

[12]Mallet C,Soerge U,Bretar F.Analysis of Full-waveform LiDAR Data for Classification of Urban Areas[C]//International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,Beijing,2008.

[13]Wagner W,Ullrich A,Ducic V,et al.Gaussian Decomposition and Calibration of a Novel Small-footprint Full-waveform Digitising Airborne Laser Scanner[J].ISPRS Journal of Photogrammetry & Remote Sensing,2006,60:100-112.

[14]Wagner W,Hyypp J,Ullrich A.Radiometric Calibration of Full-waveform Small-footprint Airborne Laser Scanners[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,Beijing,2008.

[15]Hfle B,Pfeifer N.Correction of Laser Scanning Intensity Data Data and Model-driven Approaches[J].ISPRS Journal of Photogrammetry & Remote Sensing,2007,62:415-433.

[16]Qin Yuchu,Li Bin,Niu Zheng,et al.Stepwise Decomposition and Relative Radiometric Normalization for Small Footprint LiDAR Waveform[J].Science China Earth Science,2011,41(1):103-109.[覃驭楚,李斌,牛铮,等,小光斑激光雷达全波形数据递进分解与相对辐射校正[J].中国科学:地球科学,2011,41(1):103-109.]

[17]Wang Jinhu.Full-waveform LiDAR Data Processing and Application [D].Beijing:University of Chinese Academy of Sciences,2012.[王金虎.全波形激光雷达数据处理与应用技术研究[D].北京:中国科学院大学,2012.]

[18]Wagner W.Radiometric Calibration of Small-footprint Full-waveform Airborne Laser Scanner Measurements:Basic Physical Concepts[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65:505-513.

[19]Zhang Yonghong,Zhang Jixian,Lin Zongjian,et al.Radar Radiation Distortion by Terrain and Its Correction[J].Science of Surveying and Mapping,2002,27(4):23-26.[张永红,张继贤,林宗坚,等.地形引起的雷达辐射畸变及其校正[J].测绘科学,2002,27(4):23-26.]

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[5] 苗翔鹰,苗洪利,张旭东,黄霞凤,王桂忠. 利用星下点干涉相位法提高三维成像高度计测高精度[J]. 遥感技术与应用, 2018, 33(5): 866-872.
[6] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[7] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[8] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[9] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[10] 梁继,褚楠,郑敦勇,彭焕华,张静. 面向道路边坡监测的高分二号应用研究[J]. 遥感技术与应用, 2018, 33(4): 638-645.
[11] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[12] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[13] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[14] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[15] 谢军飞,周坚华. 城镇绿化植物群软分类[J]. 遥感技术与应用, 2018, 33(4): 721-730.