Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (6): 923-929    DOI: 10.11873/j.issn.1004-0323.2014.6.0923
遥感应用     
基于ENVISat ASAR影像的湿地植被冠层下淹水范围提取以扎龙保护区为例
刘蕾1,2,那晓东1,臧淑英1,杨婧茹1
(1.黑龙江省普通高等学校地理环境遥感监测重点实验室 哈尔滨师范大学,黑龙江 哈尔滨150025;
2.黑龙江第三测绘工程院,黑龙江 哈尔滨150025)
Extraction of Flooding Extent under Wetland Vegetation Canopy Using ENVISat ASAR Imagery—A Case Study in the Zhalong Natural Reserve
Liu Lei1,2,Na Xiaodong1,Zang Shuying1,Yang Jingru1
(1.Key Laboratory of Remote Sensing Monitoring of Geographic Environment,College of Heilongjiang
Province,Harbin Normal University,Harbin 150025,China;
2.The Third Surveying and Mapping Engineering Institute of Heilongjiang,Harbin 150025,China)
 全文: PDF(3246 KB)  
摘要:

以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。

关键词: 扎龙湿地ENVISat ASAR淹水范围    
Abstract:

Multi\|polarization (HH/HV) ENVISat ASAR imagery and conventional optical remotely sensed imagery of the Landsat TM (band1~5,7) were used in this study to investigate flooding extent of Zhalong Natural Reserve.Differences between backscattering coefficients of ASAR and different bands reflectance of Landsat TM imageries were conducted in different land cover types (flooded vegetation,non\|flooded vegetation,open water,bare soil).Moreover,the classification and regression tree (CART) algorithm was employed to extract spatial distribution of wetland vegetation flooding extent with two types of imageries based on selecting training samples while ground\|truth GPS samples were used to validate classification results of two data sources.The findings demonstrate that the backscattering coefficients of water under the vegetation canopy were different from other land cover types in HH/HV polarization imagery data.The overall accuracy was satisfactory (79.49%) with higher accuracy in extracting flooded vegetation;the kappa coefficient was 0.7.However,the results of flooded vegetation with TM imagery data appeared higher classification error in some regions where water was covered with vegetation.Consequently,the SAR imagery data plays a critical role in improving the accuracy of flooding extent extraction.Furthermore,the results reported here verify that it is effective to analysis the wetland eco-hydrological processes with SAR,which is very important for rational use of water resources of natural reserve and biodiversity conservation.

Key words: Zhalong Wetlands;ENVISat ASAR    Flooding extent
收稿日期: 2013-10-21 出版日期: 2015-01-15
:  TP 79  
基金资助:

国家自然科学基金青年项目资助(41001243),国家自然科学基金重点项目资助(41030743),教育部科学技术重点项目(212046)和哈尔滨师范大学青年学术骨干项目(11XQXG21)资助。

通讯作者: 那晓东(1982-),男,黑龙江哈尔滨人,副教授,主要从事湿地遥感监测研究。Email:naxiaodong8341@163.com    
作者简介: 刘蕾(1989-),女,吉林白城人,硕士研究生,主要从事遥感与生态环境研究。Email:liulei19890105@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘蕾
那晓东
臧淑英
杨婧茹

引用本文:

刘蕾,那晓东,臧淑英,杨婧茹. 基于ENVISat ASAR影像的湿地植被冠层下淹水范围提取以扎龙保护区为例[J]. 遥感技术与应用, 2014, 29(6): 923-929.

Liu Lei,Na Xiaodong,Zang Shuying,Yang Jingru. Extraction of Flooding Extent under Wetland Vegetation Canopy Using ENVISat ASAR Imagery—A Case Study in the Zhalong Natural Reserve. Remote Sensing Technology and Application, 2014, 29(6): 923-929.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.6.0923        http://www.rsta.ac.cn/CN/Y2014/V29/I6/923

[1]Mitsch W J,Gosselink J G.Wetlands(2nd Edition)[M].New York:Van Nostrand Reinhold,1993:507-527.

[2]Yang Zhifeng,Cui Baoshan,Liu Jingling.Eco-environmental Water Demand Assessment Methods and Examples[J].Science in  China(Ser.D):Earth Sciences,2004,34(11):1072-1082.[杨志峰,崔保山,刘静玲.生态环境需水量评估方法与例证[J].中国科学(D辑):地球科学,2004,34(11):1072-1082.]

[3]Rosenqvist A,Birkket C M.Evaluation of JERS-1 SAR Mosaics for Hydrological Applications in the Congo River Basin[J].International Journal of Remote Sensing,2002,23(7):1283-1302.

[4]Pyzoha J E,Callahan T J,Sun G,et al.A Conceptual Hydrologic Model for A Forested Carolina Bay Depressional Wetland on the Coastal Plain of South Carolina,USA[J].Hydrological Processes,2007,22(14):2689-2698.

[5]Dabrowska-Zielinska K,Gruszczynska M,Stanislaw L,et al.Application of Remote Sensing and In-situ Information to the Management of Wetlands in Poland[J].Journal of Environmental Management,2008,90 (7):2261-2269.

[6]Ordoyne C,Frield M A.Using MODIS Data to Characterize Seasonal Inundation Patterns in the Florida Everglades[J].Remote Sensing of Environment,2008,112:4107-4119.

[7]Hansen M C,Defris R S,Townshend J R G,et al.Global Land Cover Classification at 1 km Spatial Resolution Using a Classification Tree Approach[J].International Journal of Remote Sensing,2000,21(6 /7):1331-1364.

[8]Wang Y,Hess L L,Filoso S,et al.Understanding the Radar Backscattering from Flooded and Non Flooded Forest:Results from Canopy Backscatter Modeling[J].Remote Sensing of Environment,1995,54:324-332.

[9]Townsend P A.Estimating Forest Structure in Wetlands Using Multitemporal SAR[J].Remote Sensing of Environment,2002,79:288-304.

[10]Powella S J,Letcher R A,Crokea B F W.Modelling Floodplain Inundation for Environmental Flows:Gwydir Wetlands[J].Australia Ecological  Modelling,2008,211:350-362.

[11]Rosenqvist A,Forsberg B R,Pimentel T,et al.The Use of Spaceborne Radar Data to Model Inundation Patterns and Trace Gas Emissions in the Central Amazon Floodplain[J].International Journal of Remote Sensing,2002,23:1303-1328.

[12]Saatchi S S,Nelson B,Podest E,et al.Mapping Landcover Types in the Amazon Basin Using 1 km JERS-1 Mosaic[J].International Journal of Remote Sensing,2000,21:1201-1234.

[13]Lang M W,Kasischke E S,Prince S D,et al.Assessment of C-Band Synthetic Aperture Radar Data for Mapping and Monitoring Coastal Plain Forested Wetlands in the Mid-Atlantic Region,U.S.A[J].Remote Sensing of Environment,2008,112:4120-4130.

[14]Martinez J M,Toan T L.Mapping of Flood Dynamics and Spatial Distribution of Vegetation in the Amazon Floodplain Using Multitemporal SAR Data[J].Remote Sensing of Environment,2007,108:209-223.

[15]Hess L L,Melack J M,Novo E M L M,et al.Dual-season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin[J].Remote Sensing of Environment,2003,87:404-428.

[16]Martinez J M,Toan T L.Mapping of Flood Dynamics and Spatial Distribution of Vegetation in the Amazon Floodplain Using Multitemporal SAR Data[J].Remote Sensing of Environment,2007,15:209-223.

[17]Gondwe B R N,Hong S H,Wdowinski S,et al.Hydrologic Dynamics of the Ground-Water-Dependent Sian Kaan Wetlands,Mexico,Derived from Insar and SAR Data[J].Wetlands,2010,30:1-13.

[18]Marti-Cardona B,Lopez-Martinez C,Dolz-Ripolles J,et al.ASAR Polarimetric,Multi-incidence Angle and Multitemporal Characterization of Donana Wetlands for Flood Extent Monitoring[J].Remote Sensing of Environment,2010,114:2802-2815.

[19]Wu Changshen.Conservation and Management of Natural Resource in Zhalong National Natural Reserve,China[M].Harbin:Northeast Forestry University Press,1999.[吴长申.扎龙保护区自然资源管理与研究[M].哈尔滨:东北林业大学出版社,1999.]

[20]Liu Lei,Zang Shuying,Na Xiaodong,et al.Wetland Mapping in the Zhalong Natural Reserve Using Optical and Radar Remotely Sensed Data and Ancillary Topographical Data[J].Geography and Geo-Information Science,2013,29(1):36-40.[刘蕾,臧淑英,那晓东,等.兼容光学雷达影像及地形辅助数据的扎龙湿地遥感分类[J].地理与地理信息科学,2013,29(1):36-40.]

[21]Chavez J P S.An Improved Dark-object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data[J].Remote Sensing Environment,1988,24(5):459-479.

[22]Stehman S V.Estimating the Kappa Coefficient and Its Variance Under Stratified Random Sampling[J].Photogrammetric Engineering & Remote Sensing,1999,62(4):401-407.

[1] 李丽丽,张艳红,邢立新,翟羽娟,董连英. 扎龙湿地龙泡子水深的高光谱建模研究[J]. 遥感技术与应用, 2013, 28(2): 212-216.
[2] 白黎娜, 王琫瑜, 田 昕, 卢 颖, 杨永恬. 基于多时相ENVISat ASAR数据的冬小麦识别方法—以北京通州试验区为例[J]. 遥感技术与应用, 2010, 25(4): 458-463.