Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (4): 767-774    DOI: 10.11873/j.issn.1004-0323.2015.4.0767
遥感应用     
基于MODIS的青藏高原雪线高度遥感监测
唐志光1,王建2,梁继1,2,李朝奎1,王欣3
(1.湖南科技大学地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201;
2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;
3.湖南科技大学地理系,湖南 湘潭 411201)
Monitoring of Snowline Altitude over the Tibetan Plateau based on MODIS Data
Tang Zhiguang1,Wang Jian2,Liang Ji1,2,Li Chaokui1,Wang Xin3
(1.National-Local Joint Engineering Laboratory of Geo\|spatial Information Technology,
Hunan University of Science and Technology,Xiangtan 411201,China;
2.Cold and Arid Regions Environmental and Engineering Research Institute,
Chinese Academy of Sciences,Lanzhou 730000,China;
3.Department of Geography,Hunan University of Science and Technology,Xiangtan 411201,China )
 全文: PDF(16046 KB)  
摘要:

雪线作为区分积雪覆盖区与无雪区的边界线,是冰冻圈各要素中对气候变化最为敏感的指示器。利用去云后的MODIS积雪面积比例产品并结合DEM数据,通过雪线像元及其高度的提取、雪线高度场的建立,对青藏高原近12 a(2000~2011年)雪线高度的时空变化特征进行了分析。结果表明:青藏高原雪线高度的分布受地形的影响,高原内部的雪线高度明显高于周围山区;在近12 a中,青藏高原的雪线高度变化虽然没有明显的年际变化趋势(升高或者降低),但是体现出较高的年内和年际波动特征,特别是青藏高原的东部和南部地区由于受西南季风的影响,夏季雪线高度的年际变化尤为强烈。提出基于MODIS的雪线高度提取方法具有较好的应用潜力,能够适用于其他地方雪线高度的遥感监测。

关键词: MODIS雪线高度青藏高原遥感监测    
Abstract:

As the boundary that separates snow\|covered areas from snow\|free areas,the snowline is the most sensitive indicator for monitoring climatic behavior among all the cryosphere elements.In this paper,the snowline altitude over the Tibetan Plateau (TP) during 2000 to 2011 are extracted using the cloud\|removed MODIS fractional snow cover products combining with DEM,and the spatiotemporal changes of snowline altitude are examined.The proposed MODIS\|based snowline altitude extracting methodology include the determination of snowline pixel and its altitude,and the establishment of snowline altitude field.The results show that due to the complex terrain,the snowline altitude in the interior of the TP is obviously higher than the peripheral mountainous area.A strong seasonal and interannual variability of snowline altitude is discovered,although there is no obvious trend of snowline altitude change during the examined period.Especially,the east and south of the TP,due to the influence of summer monsoon,there are very large interannual fluctuations of snowline altitude in the summer months.The MODIS-based snowline altitude extracting method was described in this paper,which has a good application potential in SLA monitoring for any other regions.
 

Key words: MODIS    Snowline altitude    Tibet Plateau    Remote Monitoring
收稿日期: 2014-02-24 出版日期: 2015-09-22
:  TP 79  
基金资助:

国家自然科学基金项目(41101319,41501070,41271091),中国科学院西部之光人才培养计划项目(29Y229D31),国家973计划项目(2010CB951403)资助。

作者简介: 唐志光(1985-),男,湖南邵阳人,讲师,主要从事积雪遥感方面的研究。Email:tangzhg11@lzb.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐志光
王建
梁继
李朝奎
王欣

引用本文:

唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.

Tang Zhiguang,Wang Jian,Liang Ji,Li Chaokui,Wang Xin. Monitoring of Snowline Altitude over the Tibetan Plateau based on MODIS Data. Remote Sensing Technology and Application, 2015, 30(4): 767-774.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.4.0767        http://www.rsta.ac.cn/CN/Y2015/V30/I4/767

[1]Foster J L,Sun C,Walker J P,et al.Quantifying the Uncertainty in Passive Microwave Snow Water Equivalent Observations[J].Remote Sensing of Environment,2005,94:187-203.

[2]Tang Zhiguang,Wang Jian,Yan Lili,et al.Estimating Sub-pixel Snow Cover from MODIS in Qinghai-Tibet Plateau[J].Journal of Arid Land Resources and Environment,2013,27(11):33-38.[唐志光,王建,彦立利,等.基于MODIS的青藏高原亚像元积雪覆盖率反演[J].干旱区资源与环境,2013,27(11):33-38]

[3]Che Tao.Impacts on Passive Microwave Remote Sensing of Snow from Heterogeneities of Snow Properties[J].Remote Sensing Technology and Application,2013,28(1):27-33.[车涛.积雪属性非均匀性对被动微波遥感积雪的影响[J].遥感技术与应用,2013,28(1):27-33.]

[4]Clare G R,Fitzharris B B,Chinn T J H,et al.Interannual Variation in End-of-summer Snowlines of the Southern Alps of New Zealand,and Relationships with Southern Hemisphere Atmospheric Circulation and Sea Surface Temperature Patterns[J].International Journal of Climatology,2002,22:107-120.

[5]Wunderle S,Droz M,Kleindienst H.Spatial and Temporal Analysis of The Snow Line in the Alps based on NOAA-AVHRR Data[J].Geographica Helvetica,2002,57:170-183.

[6]Kaur R,Kulkarni A V,Chaudhary B S.Using RESOURCESAT-1 Data for Determination of Snow Cover and Snowline Altitude,Baspa Basin,India[J].Annals of Glaciology,2010,51(54):9-13.

[7]McFadden E M,Ramage J,Rodbell D T.Landsat TM and ETM+ Derived Snowline Altitudes in the Cordillera Huayhuash and Cordillera Raura,Peru,1986~2005[J].The Cryosphere,2011,5:419-430.

[8]Li Qiaoyuan,Xie Zichu.Prediction of the Glacier System’s Variation under Periodical Warming——Taking the Glacier System in Yangtze Valley as an Example[J].Journal of Glaciology and Geocryology,2008,30(4):583-589.[李巧媛,谢自楚.周期性升温下冰川系统的变化预测研究——以长江流域冰川系统为例[J].冰川冻土,2008,30(4):583-589.]

[9]Zhang Hongen.Moderate Sub-pixel Snow Mapping Algorithm on Tibetan Plateau[D].Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences,2004.[张洪恩.青藏高原中分辨率亚像元填图算法研究[D].北京:中国科学院遥感应用研究所,2004.]

[10]Li Jijun,Zheng Benxing,Yang Xijin,et al.Glacier of Tibet[M].Beijing:Science Press,1986:28-30.[李吉均,郑本兴,杨锡金,等.西藏冰川[M].北京:科学出版社,1986:28-30.]

[11]Shi Yafeng.Overview of Chinese Glaciology[M].Beijing:Science Press,1988:15-18.[施雅风.中国冰川概论[M].北京:科学出版社,1988:15-18.]

[12]Lei L,Zeng Z,Zhang B.Method for Detecting Snow Lines from MODIS Data and Assessment of Changes in the Nianqingtanglha Mountains of the Tibet Plateau[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(3):769-776.

[13]Riggs G A,Hall D K,Salomonson V V.MODIS Snow Products User Guide Collection 5[EB/OL].http://modis-snow-ice.gsfc.nasa.gov/sugkc2.html,2006.

[14]Tang Zhiguang,Wang Jian,Li Hongyi,et al.Accuracy Validation and Cloud Obscuration Removal of MODIS Fractional Snow Cover Products over Tibetan Plateau[J].Remote Sensing Technology and Application,2013,28(3):423-430.[唐志光,王建,李弘毅,等.青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J].遥感技术与应用,2013,28(3):423-430.]

[15]Tang Z G,Wang J,Li H Y,et al.Spatiotemporal Changes of Snow Cover over the Tibetan Plateau based on Cloud-removed Moderate Resolution Imaging Spectroradiometer Fractional Snow Cover Product from 2001 to 2011[J].Journal of Applied Remote Sensing,2013,7(1):073582.

[16]Huang Zongli,Zhang Liangbi.Dictionary of Earth Scinece[M].Beijing:Geological Publishing House,2006:351-352.[黄宗理,张良弼.地球科学大辞典[M].北京:地质出版社,2006:351-352.]

[17]MODIS Reprojection Tool (MRT).User’s Manual,Release 4.0[EB/OL].http://lpdaac.usgs.gov/lpdaac/content/.../MRT_Users_Manual.pdf,2008.

[18]Zhang G,Xie H,Yao T,et al.Snow Cover Dynamics of Four Lake Basins over Tibetan Plateau Using Time Series MODIS Data (2001-2010)[J].Water Resources Research,2012,48(10):W10529.

[19]Parker S P.Dictionary of Earth Science[M].New York:McGraws-Hill,1997.

[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[5] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[6] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[7] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
[10] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[11] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[12] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[13] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[14] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[15] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.