Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (3): 607-616    DOI: 10.11873/j.issn.1004-0323.2016.3.0607
遥感应用     
基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究
王玉丹1,2,南卓铜,陈浩,吴小波
(1.中国科学院寒区旱区环境与工程研究所,甘肃兰州 730000;2.中国科学院大学,北京 100049;
3.南京师范大学地理科学学院,江苏南京 210023;4.宝鸡文理学院,陕西宝鸡 721013)
Correction of CMORPH Daily Precipitation Data over the Qinghai-Tibetan Plateau with K-Nearest Neighbor Model
Wang Yudan1,2,Nan Zhuotong3,Chen Hao4,Wu Xiaobo1
(1.Cold and Arid Regions Environmental and Engineering Research Institute,
Chinese Academy of Sciences,Lanzhou 730000,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.School of Geography Science,Nanjing Normal University,Nanjing 210023,China;
4.Baoji University of Science and Art,Baoji 721013,China)
 全文: PDF(11395 KB)  
摘要:

青藏高原的降水数据主要由遥感产品和多源观测数据融合产生,由于青藏高原的观测站点分布稀疏不均,遥感数据误差较大,因此常用的CMORPH(ClimatePredictionCenter Morphing Technique)等降水数据集精度有限.通过K 最近邻(KGNearestNeighbor,简称KNN)模型,可以建立环境(海拔、坡度、坡向、植被)、气象因子(气温、湿度、风速)和日降水量的关系,从而订正青藏高原的CMORPH 日降水数据集,提高数据精度.对CMORPH 日降水数据的误差分析表明,采用KNN 模型订正后的CMORPH 降水数据优于原始数据和采用PDF(ProbabilityDensityFunctionMatchingMethod)法订正的CMORPH 数据,且空间分布较好地符合青藏高原的降水分布特征.

关键词: 最近邻模型降水数据CMORPH青藏高原    
Abstract:

Precipitation data of the Qinghai\|Tibetan Plateau(QTP)are generally fused from multiple source remote sensing products and observation data.While the meteorological observations on the QTP are scarcely and unevenly distributed,the commonly used precipitation datasets,such as CMORPH(Climate Prediction Center Morphing Technique)bear fairly large errors.In this paper the K\|Nearest Neighbor(KNN)model was applied for correcting CMORPH daily precipitation over the QTP by establishing the relationship between daily precipitation and environmental,such as elevation,slope,aspect,and vegetation,and meteorological factors such as air temperature,humidity,and wind speed.The results show that the KNN\|corrected CMORPH precipitation is more accurate than both the original CMORPH precipitation and the PDF\|corrected results which were processed with a probability density function matching method and are available for downloading on the official Web site of Chinese Meteorological Administration.Examination of typical regions shows the KNN\|corrected results well represent the characteristics of precipitation distribution over the QTP.

Key words: KNN model;Precipitation data;CMORPH;The Qinghai\    Tibetan Plateau
收稿日期: 2016-01-15 出版日期: 2016-07-19
:  TP79   
基金资助:

国家自然科学基金面上项目(41471059),宝鸡文理学院博士启动费项目(ZK16065).

通讯作者: 南卓铜(1977-),男,浙江乐清人,教授,主要从事陆表过程集成建模、科学数据共享等研究.Email:nanzt@njnu.edu.cn.   
作者简介: 王玉丹(1989-),女,河南洛阳人,硕士研究生,主要从事遥感与地理信息研究.Email:wydan@lzb.ac.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王玉丹
南卓铜
陈浩
吴小波

引用本文:

王玉丹,南卓铜,陈浩,吴小波. 基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究[J]. 遥感技术与应用, 2016, 31(3): 607-616.

Wang Yudan,Nan Zhuotong,Chen Hao,Wu Xiaobo. Correction of CMORPH Daily Precipitation Data over the Qinghai-Tibetan Plateau with K-Nearest Neighbor Model. Remote Sensing Technology and Application, 2016, 31(3): 607-616.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.3.0607        http://www.rsta.ac.cn/CN/Y2016/V31/I3/607

[1]Wu Guoxiong,Wang Jun,Liu Xin,et al.Numerical Modeling of the Influence of Eurasian Orography on the Atmospheric Circulation in Different Season[J].Acta Meteorologica Sinica,2005,63(5):603-612.[吴国雄,王军,刘新,等.欧亚地形对不同季节大气环流影响的数值模拟研究[J].气象学报,2005,63(5):603-612.]

[2]Wang Tongmei,Wu Guoxiong,Wan Rijin.Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia[J].Plateau Meteorology,2008,27(1):1-9.[王同美,吴国雄,万日金.青藏高原的热力和动力作用对亚洲季风区环流的影响[J].高原气象,2008,27(1):1-9.]

[3]Moulin L,Gaume E,Obled C.Uncertainties on Mean Areal Precipitation:Assessment and Impact on Streamflow Simulations[J].Hydrology and Earth System Sciences,2009,13(2):99-114.

[4]Joyce R J,Janowiak J E,Arkin P A,et al.CMORPH:A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution[J].Journal of Hydrometeorology,2004,5(3):487-503.

[5]Ebert E E,Janowiak J E,Kidd C.Comparison of Near-real-time Precipitation Estimates from Satellite Observations and Numerical Models[J].Bulletin of the American Meteorological Society,2007,88(1):1-47.

[6]Yang Y F,Luo Y.Evaluating the Performance of Remote Sensing Precipitation Products Cmorph,Persiann,and Tmpa,in the Arid Region of Northwest China[J].Theoretical and Applied Climatology,2014,118(3):429-445.

[7]Xu Shiguang,Niu Zheng,Shen Yan,et al.A Research into the Characters of CMORPH Remote Sensing Precipitation Error in China[J].Remote Sensing Technology and Application,2014,29(2):189-194.[许时光,牛铮,沈艳,等.CMORPH卫星降水数据在中国区域的误差特征研究[J].遥感技术与应用,2014,29(2):189-194.]

[8]Xu Shiguang,Niu Zheng,Shen Yan,et al.Evaluation and Modification of CMORPH Multi-satellite Precipitation Estimates in Summer over Tibetan Plateau[J].Remote Sensing Information,2015,30(1):71-76.[许时光,牛铮,沈艳,等.CMORPH对青藏高原地区夏季降水的模拟精度研究与修正[J].遥感信息,2015,30(1):71-76.]

[9]Shen Y,Xiong A Y,Wang Y,et al.Performance of High-resolution Satellite Precipitation Products over China[J].Journal of Geophysical Research-Atmospheres,2010,115(2):144-153.

[10]Yu Jingjing,Shen Yan,Pan Yang,et al.Improvement of Satellite-nased Precipitation Estimates over China based on Probability Density Function Matching Method[J].Journal of Applied Meteorological Science,2013,24(5):544-553.[宇婧婧,沈艳,潘旸,等.概率密度匹配法对中国区域卫星降水资料的改进[J].应用气象学报,2013,24(5):544-553.]

[11]Kan Baoyun,Su Fengge,Tong Kai,et al.Analysis of the Applicability of Four Precipitation Datasets in the Upper Reaches of the Yarkant River,the Karakorum[J].Journal of Glaciology and Geocryology,2013,35(3):710-722.[阚宝云,苏凤阁,童凯,等.四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析[J].冰川冻土,2013,35(3):710-722.]

[12]Zhang Mengmeng,Jiang Zhihong.Analyses of High-resolution Merged Precipitation Products over China[J].Climatic and Environmental Research,2013,18(4):461-471.[张蒙蒙,江志红.我国高分辨率降水融合资料的适用性评估[J].气候与环境研究,2013,18(4):461-471.]

[13]Shen Yan,Pan Yang,Yu Jingjing,et al.Quality Assessment of Hourly Merged Precipitation Product over China[J].Transactions of Atmospheric Sciences,2013,36(1):37-46.[沈艳,潘旸,宇婧婧,等.中国区域小时降水量融合产品的质量评估[J].大气科学学报,2013,36(1):37-46.]

[14]Jiang Zhihong,Lu Yao,Ding Yuguo.Analysis of the High-resolution Merged Precipitation Products over China based on the Temporal and Spatial Structure Score Indices[J].Acta Meteorologica Sinica,2013,71(5):891-900.[江志红,卢尧,丁裕国.基于时空结构指标的中国融合降水资料质量评估[J].气象学报,2013,71(5):891-900.]

[15]Jia S F,Zhu W B,Lü A F,et al.A Statistical Spatial Downscaling Algorithm of TRMM Precipitation nased on NDVI and DEM in the Qaidam Basin of China[J].Remote Sensing of Environment,2011,115(12):3069-3079.

[16]Daly C,Neilson R P,Philips D L.A Statistical Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain[J].Journal of Applied Meteorology,1994,33(2):140-158.

[17]Liu Yaqin,Fan Guangzhou,Zhou Dingwen,et al.Variability of NDVI in Winter and Spring on the Tibetan Plateau and Their Relationship with Summer Precipitation[J].Acta Meteorologica Sinica,2007,65(6):959-967.[刘雅勤,范广洲,周定文,等.青藏高原冬、春植被归一化指数变化特征及其与高原夏季降水的联系[J].气象学报,2007,65(6):959-967.]

[18]Beuchat X,Schaefli B,Soutter M,et al.Toward a Robust Method for Subdaily Rainfall Downscaling from Daily Data[J].Water Resources Research,2011,47(9):24-42.

[19]Hart P.The Condensed Nearest Neighbor Rule[J].IEEE Transactions on Information Theory,1968,14(3):515-516.

[20]Zeng Xiaoqing,Shao Mingxuan,Wang Shigong,et al.Forecasting Precipitation Experiment with KNN based on Crossing Verification Technology[J].Journal of Applied Meteorological Science,2008,19(4):471-478.[曾晓青,邵明轩,王式功,等.基于交叉验证技术的KNN方法在降水预报中的试验[J].应用气象学报,2008,19(4):471-478.]

[21]Zhai Yumei,Zhao Ruixing.K-Nearest Neighbor Nonparametric Estimation Bootstrap Model for Weather Probability Forecasting[J].Journal of System Simulation,2005,17(4):786-788.[翟宇梅,赵瑞星.概率天气预报的K近邻非参数估计仿真模型[J].系统仿真学报,2005,17(4):786-788.]

[22]Liu Junhui,Gao Jixi,Wang Wenjie.Variations of Vegetation Coverage and Its Relations to Global Climate Changes on the Tibetan Plateau during 1981~2005[J].Journal of Mountain Science,2013,31(2):234-242.[刘军会,高吉喜,王文杰.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报,2013,31(2):234-242.]

[23]Xu S G,Niu Z,Kuang D,et al.Estimating Summer Precipitation over the Tibetan Plateau with Geostatistics and Remote Sensing[J].Mountain Research and Development,2013,33(4):424-436.

[24]Chen Y Y,Yang K,He J,et al.Improving Land Surface Temperature Modeling for Dry Land of China[J].Journal of Geophysical Research-Atmospheres,2011,116(D20104):12-20.

[25]Liston G.E,Elder K.A Meteorological Distribution System for High-resolution Terrestrial Modeling(MicroMet)[J].Journal of Hydrometeorology,2006,7(2):217-234.

[26]Pan X D,Li X,Yang K,et al.Comparison of Downscaled Precipitation Data over a Mountainous Watershed:A Case Study in the Heihe River Basin[J].Journal of Hydrometeorology,2014,15(4):1560-1574.

[27]Mernild S H,Liston G E,Hasholt B.Snow-distribution and Melt Modelling for Glaciers in Zackenberg River Drainage Basin,North-eastern Greenland[J].Hydrological Processes,2007,21(24):3249-3263.

[28]Qi Wenwen,Zhang Baiping,Pang Yu,et al.TRMM-data-nased Spatial and Seasonal Patterns of Precipitation in the Qinghai-Tibet Plateau[J].Scientia Geographica Sinica,2013,33(8):999-1005.[齐文文,张百平,庞宇,等.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学,2013,33(8):999-1005.]

[29]Zheng Du.Qinghai-Xizang Plateau and Its Effects on Regional Differentiation of Physical Environments in West China[J].Quaternary Sciences,2001,21(6):484-489.[郑度.青藏高原对中国西部自然环境地域分异的效应[J].第四纪研究,2001,21(6):484-489.]

[1] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[2] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[3] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[4] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[5] 黄田进,梁丁丁,贾立,张静潇,卢静,周杰. 青藏高原地区湖泊面积插补迭代自动提取#br#[J]. 遥感技术与应用, 2017, 32(2): 289-298.
[6] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[7] 安培浚,高峰,王立伟. 青藏高原冰川、积雪与地质灾害空间观测研究态势分析[J]. 遥感技术与应用, 2016, 31(6): 1223-1230.
[8] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[9] 肖林,车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
[10] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[11] 李娜,谢虹. 青藏高原NDVI对ENSO事件的响应[J]. 遥感技术与应用, 2014, 29(5): 818-822.
[12] 史健宗,南卓铜,赵林. 多年冻土元数据标准研究和应用[J]. 遥感技术与应用, 2014, 29(5): 878-885.
[13] 许时光,牛铮,沈艳,旷达. CMORPH卫星降水数据在中国区域的误差特征研究[J]. 遥感技术与应用, 2014, 29(2): 189-194.
[14] 唐志光,王建,李弘毅,彦立利,梁继. 青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J]. 遥感技术与应用, 2013, 28(3): 423-430.
[15] 何文英,陈洪滨,孙强,王旻燕. 青藏高原地表微波比辐射率的反演与分析[J]. 遥感技术与应用, 2011, 26(6): 735-741.