Please wait a minute...
img

官方微信

遥感技术与应用  2017, Vol. 32 Issue (6): 1012-1021    DOI: 10.11873/j.issn.1004-0323.2017.6.1012
模型与反演     
基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算
张雅1,2,3,尹小君1,2,3,王伟强1,2,3
( 1.石河子大学信息科学与技术学院,新疆 石河子 832000;
2.兵团空间信息工程技术研究中心,新疆 石河子832000;
3.兵团空间信息工程实验室,新疆 石河子832000;
4.石河子大学动物科技学院,新疆 石河子832000)
Estimation of Grassland Aboveground Biomass Using Landsat 8 OLI  Satellite Image in the Northern Hillside of Tianshan Mountain
Zhang Ya1,2,3,Yin Xiaojun1,2,3,Wang Weiqiang1,2,3
(1.College of Information Science and Technology,Shihezi University,Shihezi 832000,China;
2.Geospatial Information Engineering Research Center,Xinjiang Production and Construction
Corps,Shihezi  832000,China;3.Geospatial Information Engineering Laboratory,Xinjiang Production and Construction Corps,Shihezi  832000,China;
4.College of Animal Science and Technology,Shihezi University,Shihezi  832003,China)
 全文: PDF(3686 KB)  
摘要:
利用Landsat 8 OLI遥感数据获得NDVI、RVI、DVI、EVI、GNDVI和SAVI等6种常用植被指数,同时结合研究区草地地面实测数据,再根据坡向将研究区划分为阴坡和阳坡两类,利用统计分析方法分别建立紫泥泉牧场阴坡和阳坡的草原生物量遥感估算模型,并进行生物量空间反演和验证。相关分析结果表明:所选植被指数与牧场生物量显著相关,依据坡向分类后数据与未分类数据相关性存在较大差异,其中NDVI相关性最高,EVI相关性最低;紫泥泉草场生物量最优反演模型为基于SAVI的二次多项式模型,精度达80%。利用该模型反演得到2015年紫泥泉牧场草原平均鲜草产草量为113 g/m2,折合干草产草量41.85 g/m2 。研究表明:坡向是影响生物量分布变化的重要因素;利用遥感数据、地面实测生物量数据并结合研究区阴阳坡地形特征,提出的生物量估算模型精度较高,可为该牧区草原生物量合理估算和草地放牧管理提供科学依据。
 
关键词: 遥感Landsat 8草地生物量坡向反演模型    
Abstract:
The Landsat 8 OLI remote sensing data was used to obtain six kinds of commonly vegetation indices including NDVI,RVI,DVI,EVI,GNDVI and SAVI.Meanwhile,combining with the measured data of grassland in the research area,the research area was divided into two kinds of shady and sunny slope according to the slope.Then the biomass remote sensing estimation models of shady and sunny slope in Ziniquan Ranch were created by Statistical analysis method and biomass space inversion and verification was implemented.The results of correlation analysis showed that the selected vegetation indices were significantly correlated with pasture biomass and there was a significant difference between the correlation of the classified data and the non classified data by slope,in which NDVI was the highest and EVI was the lowest.The optimal inversion model of Ziniquan Ranch biomass was based on the two order polynomial model of SAVI with the accuracy 80%.By using this model reversion,the grassland average yield of Ziniquan Ranch in 2015 was 113 g/m2,which equaled to dry grass yield 41.85 g/m2.The research shows that the slope direction is an important factor affecting the distribution of biomass.Using remote sensing data and ground measured biomass data and combining with the characteristics of the topography of shady and sunny slope of the research area,the biomass estimation model has higher accuracy,which could provide scientific basis for the reasonable estimation of grassland biomass and management of grassland grazing in the pastoral area.
Key words: Remote sensing    Landsat 8    Grassland biomass    Slope direction    Inversion model
收稿日期: 2016-09-29 出版日期: 2018-03-08
:  TP 79  
基金资助: 国家自然科学基金项目“基于北斗终端时空轨迹和遥感的天然草地利用评估方法研究”(41461088),国家自然科学基金项目“基于绵羊放牧轨迹的绢蒿荒漠草地植物种子消化道传播研究”(31560659),石河子大学自然科学基金项目“加工番茄主要病害高光谱遥感生化反演研究”(RCZX201226),石河子大学自然科学基金项目“时空融合的荒漠土壤盐渍化动态监测”(2013ZRKXYQ18)资助。

作者简介: 张雅(1992-),女,河南漯河人,硕士研究生,主要从事空间信息技术及应用研究。|mail:zhangy_0521@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张雅
尹小君
王伟强

引用本文:

张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.

Zhang Ya,Yin Xiaojun,Wang Weiqiang. Estimation of Grassland Aboveground Biomass Using Landsat 8 OLI  Satellite Image in the Northern Hillside of Tianshan Mountain. Remote Sensing Technology and Application, 2017, 32(6): 1012-1021.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.6.1012        http://www.rsta.ac.cn/CN/Y2017/V32/I6/1012

[1]董伟,徐博瀚,王立成.工程事故案例分析在钢筋混凝土结构课程中的引入与运用[J].高等建筑教育,2017,26(3):47-50.
DONG Wei,XU Bohan,WANG Licheng.Introduction and Application of Engineering Accident Case Analysis in the Teaching Process of Reinforced Concrete Structure Course[J].Journal of Architectural Education in Institutions of Higher Learning,2017,26(3):47-50.
[2]相军.钢筋混凝土建筑抗连续震动壁板结构分析[J].科学技术与工程,2016,16(32):283-287.
XIANG Jun.Reinforced Concrete Construction Continuous Vibration Resistance Wall Structure Analysis[J].Science Technology and Engineering,2016,16(32):283-287.
[3]赵雄飞,陈开圣.干湿循环条件下红粘土的胀缩变形特性研究[J].贵州大学学报(自然科学版),2016,33(1):132-135.
ZHAO Xiongfe,CHEN Kaisheng.Study on the Swell & Shrinking Deformation Characteristics of Red Clay under the Condition of Dry-Wet Circulation[J].Journal of Guizhou University (Natural Science),2016,33(1):132-135.
[4]杨磊,申波,周世明,等.新型斜柱转换结构的抗震性能分析[J].贵州大学学报(自然科学版),2016,33(6):67-70,108.
YANG Lei,SHEN Bo,ZHOU Shiming,et al.Different Limb Thickness Ratio on Seismic Performance of New Type Inclined Column Transferring Structure[J].Journal of Guizhou University (Natural Science),2016,33(6):67-70,108.〖ZK)〗
[5]郑睿,于虹.钢筋混凝土建筑结构的抗震性能分析与实验[J].华侨大学学报(自然科学版),2017,38(1):45-48.
ZHENG Rui,YU Hong.Seismic Performance Analysis and Experimental Study of Reinforced Concrete Building Structure[J].Journal of Huaqiao University (Natural Science),2017,38(1):45-48.
[6]李勇,张维维,袁佳慧,等.潜流带水流特性及氮素运移转化研究进展[J].河海大学学报(自然科学版),2016,44(1):1-7.
LI Yong,ZHANG Weiwei,YUAN Jiahui,et al.Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones[J].Journal of Hohai University(Natural Sciences),2016,44(1):1-7.
[7]王浩,李易,陆新征,等.单层钢筋混凝土框架结构水平向连续倒塌试验研究[J].建筑结构学报,2016,37(10):65-72.
WANG Hao,LI Yi,LU Xinzheng,et al.Experimental Investigation on Horizontal Progressive Collapse of One-story Reinforced Concrete Frame[J].Journal of Building Structures,2016,37(10):65-72.
[8]宫文然,吴振强,李海波,等.飞行器壁板结构热屈曲分析与试验研究进展[J].强度与环境,2016,43(4):9-16.
GONG Wenran,WU Zhenqiang,LI Haibo,et al.Review of the Investigation on Thermal Buckling Analysis and Experiment for Aircraft Panel Structures[J].Structure & Environment Engineering,2016,43(4):9-16.
[9]肖飞,原崇新,丛晶洁.复合材料加筋壁板结构件VARI液体成型工艺计算模拟[J].航空材料学报,2016,36(4):47-54.
XIAO Fei,YUAN Chongxin,CONG Jingjie.Computational Simulation of VARI Fluid Process Molding for Stiffened Panel Structural Composites[J].Journal of Aeronautical Materials,2016,36(4):47-54.
[10]ZHONG J,GARDONI P,ROSOWSKY D.Stiffness Degradation and Time to Cracking of Cover Concrete in Reinforced Concrete Structures Subject to Corrosion[J].Journal of Engineering Mechanics,2015,136(2):209-219.
[11]THIAGARAJAN G,KADAMBI A V,ROBERT S,et al.Experimental and Finite Element Analysis of Doubly Reinforced Concrete Slabs Subjected to Blast Loads[J].International Journal of Impact Engineering,2015,75:162-173.
[12]YU Z,LI S,LU D,et al.Failure Mechanism of Single-layer Steel Reticular Domes with Reinforced Concrete Substructure Subjected to Severe Earthquakes[J].International Journal of Steel Structures,2016,16(4):1083-1094.
[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[3] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[6] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[7] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[8] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[9] 施佩荣,陈永富,刘华,吴云华. 基于分割评价函数的多尺度分割参数的选择[J]. 遥感技术与应用, 2018, 33(4): 628-637.
[10] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[11] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[12] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[13] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[14] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[15] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.