Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (2): 193-201    DOI: 10.11873/j.issn.1004-0323.2018.2.0193
综述     
被动微波遥感在地表冻融监测中的应用研究进展
王宝刚1,3,晋锐1,2,赵泽斌1,亢健1,2
(1.中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室,甘肃 兰州  730000;
2.中国科学院西北生态环境资源研究院 黑河遥感试验研究站,甘肃 兰州  730000;
3.中国科学院大学,北京  100049)
Recently Research Progresses in Detecting Surface Soil Freeze-thaw Cycles with Passive Microwave Remote Sensing
Wang Baogang1,3,Jin Rui1,2,Zhao Zebin1,Kang Jian1,2
(1.Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco\|Environmentand Resources,Chinese Academy of Sciences,Lanzhou 730000,China;2.Heihe Remote Sensing Experimental Research Station,Northwest Institute of Eco-Environmentand Resources,Chinese Academy of Sciences,Lanzhou 730000,China;3.University of Chinese Academy of Sciences,Beijing 100049 )
 全文: PDF(1030 KB)  
摘要:
地表冻融过程强烈影响着地气能量交换、地表径流、作物生长和碳循环等陆地表层过程,利用微波遥感监测地表冻融循环及其相关的地表信息对气候的响应和反馈显然极其重要。随着SMOS(Soil Moisture and Ocean Salinity mission)、SMAP(Soil Moisture Active Passive mission)计划的实施,相对于早期广泛使用的C、X、K和Ka微波波段,L波段具有更低的频率、更深的穿透深度以及对土壤介电常数变化的敏感性,不仅被用于传统的地表冻融状态监测,还被扩展应用于估算土壤冻结深度、冻结速率、相变水含量等信息,显示出更广阔的应用前景。回顾了近年来被动微波遥感在地表冻融循环监测方面的最新研究进展,包含遥感监测原理、微波传感器、遥感算法等方面,重点介绍和总结了L波段在地表冻融循环遥感监测中的前沿研究,并对其应用潜力进行了展望。
关键词: 地表冻融循环介电常数微波遥感L波段    
Abstract: Surface soil freeze-thaw processes affect the energy and water exchange between the land surface and the atmosphere,hydrological cycle process and ecological system activity.It is obviously important to study the spatial distribution and temporal dynamics of surface soil freeze-thaw cycle,frozen depth,transition water content by the remote sensing technology,and their influences on and feedback with climate change.With the implementation of the SMOS and SMAP satellite projects,the L-band,with lower frequency,deeper penetration depth and stronger dielectric sensitivity,can be used to not only monitor the surface freeze-thaw cycles,but also to estimate the soil frozen depth,frozen velocity and phas-|change water content.Compared with the widely used C,X,Ku and Ka bands,L-band has a wider application potential.As a supplement,this paper reviewed soil freeze-thaw cycle with passive microwave remote sensing,including observation principle and advantage of L band,newly improved and developed algorithms,passive radiometers and so on,particularly focusing on the development and potential of the L-band.
Key words: Freeze/Thaw processes    Dielectric constant    Passive microwave remote sensing    L-band
收稿日期: 2017-10-19 出版日期: 2018-05-15
:  TP 79  
基金资助:
国家自然科学基金项目(41471357)。
 
作者简介: 王宝刚(1992-),男,江苏淮安人,硕士研究生,主要从事被动微波遥感研究。Email:wangbg@lzb.ac.cn 。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王宝刚
晋锐
赵泽斌
亢健

引用本文:

王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.

Wang Baogang,Jin Rui,Zhao Zebin,Kang Jian. Recently Research Progresses in Detecting Surface Soil Freeze-thaw Cycles with Passive Microwave Remote Sensing. Remote Sensing Technology and Application, 2018, 33(2): 193-201.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.2.0193        http://www.rsta.ac.cn/CN/Y2018/V33/I2/193

[1]Kimball J,McDonald K,Keyser A,et al.Application of the NASA Scatterometer(NSCAT)for Determining the Daily Frozen and Nonfrozen Landscape of Alaska[J].Remote Sensing of Environment,2001,75(1):113-126.
[2]DeConto R M,Galeotti S,Pagani M,et al.Past Extreme Warming Events Linked to Massive Carbon Release from Thawing Permafrost[J].Nature, 2012,484(5):87-91.
[3]Menzel A,Sparks T H,Estrella N,et al.European Phonological Response to Climate Change Matches the Warming Pattern[J].Global Change Biology,2006,12:1269-1976.
[4]Jin Rui,Li Xin,Che Tao.A Decision Tree Algorithm for Surface Freeze/thaw Classification using SSM/I[J].Journal of Remote Sensing,2009,13(1):152-161.[晋锐,李新,车涛.SSM/I 监测地表冻融状态的决策树算法[J],遥感学报,2009,13(1):152-161.]
[5]Kimmo R,Juha L,Jouni P,et al.L-band Radiometer Observations of Soil Processes in Boreal and Subarctic Environments[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1483-1497.
[6]Jin R,Koike T,Li X,et al.Modeling the Microwave Radiative Transfer in Frozen Soil by Considering the Scatter Darkening Effect[J].IEEE Geoscience and Remote Sensing Letters,2014,(Under Review).
[7]Gu Zhongwei.The Application s of Ground Probing Radar to Geological Investigaton on Ground in Cold Regions[J].Journal of Glaciology and Geocryology,1994,16(3):283-288.[顾钟炜.测地雷达在寒区浅层地质调查中的应用[J].冰川冻结土壤,1994,16(3):283-288.]
[8]Matzler C,Ellison W,Thomas B,et al.Thermal Microwave Radiation:Applications for Remote Sensing[M].London:Institution of Engineering and Technology,2006.
[9]Jackson T,Schmugge T.Passive Microwave Remote Sensing System for Soil Moisture:Some Supporting Research[J].IEEE Transactions on Geoscience and Remote Sensing,1989,27:225-235.
[10]Bateni S M,Huang C L,Margulis S A,et al.Feasibility of Characterizing Snowpack and the Freeze-thaw State of Underlying Soil Using Multifrequency Active/Passive Microwave Data[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):4085-4102.
[11]Dai L Y,Che T,Ding Y.Inter-Calibrating SMMR,SSM/I and SSMI/S Data to Improve the Consistency of Snow-depth Products in China[J].Remote Sensing,2015,7:7212-7230.
[12]Hu Wenxiang,Chai Linna,Zhao Shaojie,et al.Improvement on Soil Feeeze/Thaw Discriminant Algorithm under Complex Surface Conditions in Cold Regions[J].Remote Sensing Technology and Application,2017,32(2):395-405.[胡文星,柴林娜,赵少杰,等.寒区复杂地表冻融状态判别式算法改进[J].遥感技术与应用,2017,32(2):395-405.]
[13]England A.The Effect upon Microwave Emissivity of Volume Scattering in Snow,in Ice,and in Frozen Soil[C]∥Specialist Meeting on Microwave Scattering and Emission from the Earth,Berne,Switzerland,1974:273-287.
[14][KG*4/5]Zuerndorfer B,England A W,Dobson M C,et al.Mapping Freezing/thaw Boundary with SMMR Data[J].Agricultural and Meteorology,1990,52:199-225.
[15]Judge J,Galantowicz J F,England A,et al.Freeze/Thaw Classification for Prairie Soils Using SSM/I Radiobrightnesses[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):827-832.
[16]Zhang T,Armstrong R L.Soil Freeze/thaw Cycles over Snow-Free Land Detected by Passive Microwave Remote Sensing.Geophysical Research Letters,2001,28(5):763-766.
[17]Zhang T,Armstrong R L,Smith J.Investigation of the Near-surface Soil Freeze-thaw Cycle in the Contiguous United States:Algorithm Development and Validation[J].Journal of Geophysical Research:Atmospheres,2003,108(22):S80-85.
[18]Han L J,Tsunekawa A,Tsubo M.Monitoring Near-surface Soil Freeze-thaw Cycles in Northern China and Mongolia from 1998 to 2007[J].International Journal of Applied Earth Observation & Geoinformation,2010,12(5):375-384.
[19]Jin R,Zhang T,Li X,et al.Mapping Surface Soil Freeze-thaw Cycles in China based on SMMR and SSM/I Brightness Temperatures from 1978 to 2008[J].Arctic Antarctic and Alpine Research,2015,47(2):213-229.
[20]Han M L,Yang K,Qin J,et al.An Algorithm based on the Standard Deviation of Passive Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State on the Tibetan Plateau[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2775-2783.
[21]Zhao Tianjie,Zhang Lixin,Jiang Linmei,et al.Microwave Radiation of Frozen and Thawed Soils under Complicated Surface Condition:Simulation and Discrimination Analysis[J].Journal of Glaciology and Geocryology,2009,31(2):36-42.[赵天杰,张立新,蒋玲梅,等.复杂地表条件下冻融土的微波辐射特性模拟及判别分析[J].冰川冻土,2009,31(2):36-42.][22]Zhao T,Zhang L,Jiang L,et al.A New Soil Freeze/Thaw Discriminant Algorithm Using AMSR-E Passive Microwave Imagery[J].Hydrological Processes,2011,25(11):1704-1716.
[23]Kim Y,Kimball J S,Mcdonald K C,et al.Developing A Global Data Record of Daily Landscape Freeze/Thaw Status Using Satellite Passive Microwave Remote Sensing[J].IEEE Transactions on Geoscience & Remote Sensing,2011,49(3):949-960.[JP]
[24]Xie Yanmei.Monitoring the Surface Freeze/Thaw Cycles Combining Active and Passive Microwave Remote Sensing[D].Beijing:University of Chinese Academy of the Sciences,2013.[谢燕梅.主/被动微波遥感联合监测地表冻融循环[D].北京:中国科学院大学,2013.]
[25]Schwank M,Kontu A,Schwank M,et al.Detection of Soil Freezing from L-band Passive Microwave Observations[J].Remote Sensing of Environment,2014,147:206-218.
[26]Rautiainen K,Parkkinen T,Lemmetyinen J,et al.SMOS Prototype Algorithm for Detecting Autumn Soil Freezing[J].Remote Sensing of Environment,2016,180:346-360.
[27]Roy A,Royer A,Derksen C,et al.Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2015,8(9):4442-4459.
[28]Schwank M,Sthli M,Wydler H,et al.Microwave L-band Emission of Freezing Soil[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1252-1261.
[29]Zhang L,Zhao T,Jiang L,et al.Estimate of Phase Transition Water Content in Freeze/Thaw Process Using Microwave Radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2011,48(12):4248-4254.
[30]Anderson D M,Tice A R.Predicting Unfrozen Water Contents in Frozen Soils from Surface Area Measurements[J].Highway Research Record,1972,373:12-18.
[31]Han L,Tsunekawa A,Tsubo M.Active and Passive Remote Sensing of Springtime Near-surface Soil Thaw at Midlatitudes[J].IEEE Geoscience and Remote Sensing Letters,2012,9:427-431.
[32]Montzka C,Jagdhuber T,Horn R,et al.Investigation of SMAP Fusion Algorithms with Airborne Active and Passive L-band Microwave Remote Sensing[J].EEE Transactions on Geoscience and Remote Sensing.,2016,54(7):3878-3889.
[33]erksen C,Xu X,Dunbar R S,et al.Retrieving Landscape Freeze/thaw State from Soil Moisture Active Passive(SMAP)Radar and Radiometer Measurements[J].Remote Sensing of Environment,2017,194:48-62.
[1] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[2] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[3] 胡文星,柴琳娜,赵少杰,赵天杰. 寒区复杂地表冻融状态判别式算法改进[J]. 遥感技术与应用, 2017, 32(3): 395-405.
[4] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[5] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[6] 晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826.
[7] 王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.
[8] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[9] 张勇,孙强,吕达仁. 几种海水微波复介电常数模型的比较和分析[J]. 遥感技术与应用, 2014, 29(2): 212-218.
[10] 董佩明,李玮,黄江平,刘靓坷. 卫星微波遥感受水成物影响及其敏感度分析研究[J]. 遥感技术与应用, 2014, 29(2): 300-308.
[11] 胡潭高,张登荣,王洁,张煜洲. 基于遥感卫星资料的台风监测技术研究进展[J]. 遥感技术与应用, 2013, 28(6): 994-999.
[12] 孙广轮,关道明,赵冬至,王新新,王祥. 星载微波遥感观测海表温度的研究进展[J]. 遥感技术与应用, 2013, 28(4): 721-730.
[13] 李洋洋,李晓洁,赵凯,郑兴明. 吉林西部盐碱地特性微波双频差分无损探测[J]. 遥感技术与应用, 2012, 27(6): 822-828.
[14] 王新新,赵冬至,杨建洪,王 祥. 海表面盐度卫星微波遥感研究进展[J]. 遥感技术与应用, 2012, 27(5): 671-679.
[15] 陈修治,陈水森,苏泳娴,李 丹,韩留生. 基于被动微波遥感的2008年广东省春季低温与典型作物寒害研究[J]. 遥感技术与应用, 2012, 27(3): 387-395.