Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 136-145    DOI: 10.11873/j.issn.1004-0323.2019.1.0136
模型与反演     
基于直方图与像元分解模型的森林覆盖度遥感估算
董立新1,2
(1.中国遥感卫星辐射测量与定标重点开放实验室,北京 100081;
2.国家卫星气象中心,北京 100081)
Remote Sensing Estimation of Forest Coverage based on Histogram and Pixel Decomposition Model
Dong Lixin1,2
(1.Key Laboratory of Radiometric Calibration and Validation for EnvironmentalSatellites,Beijing 100081,China;
2.National Satellite Meteorological Center,Beijing 100081,China)
 全文: PDF(11953 KB)  
摘要: 森林覆盖度是能够勾描出林分边界的森林覆盖率,定量化的覆盖度信息可体现其水平尺度的时空分异特性。像元分解模型在覆盖度遥感估算中得到了广泛应用,但仍然有很多问题,如很难找到一种树冠覆盖度的纯光谱端元,从而难以高精度地估算树冠覆盖度。为此,基于像元分解模型,结合使用土地利用和土壤类型数据,提出利用直方图法确定模型中不同类型植被——土壤端元参数,对区域尺度森林覆盖度进行估算,并利用三峡库区的历史野外161个样点的实测覆盖度数据进行验证,发现R2达到0.74~0.85,计算结果比较满意。该方法将为区域尺度高分辨率森林覆盖度的遥感估算提供借鉴。
关键词: 森林覆盖度像元分解模型直方图法三峡库区遥感    
Abstract: Forest coverage is the percentage of forest cover for hooking out the forest stand boundary,and quantitative coverage information can be used for describing the temporal and spatial variability of vegetation in the horizontal scale.Pixel decomposition model has been widely used in remote sensing estimation of vegetation coverage.However,there are still many problems.For example,it is difficult to find a pure spectrum of tree canopy coverage to estimate the crown coverage with high accuracy in forest vegetation applications.In this paper,combining land use and soil type data,it is proposed to determine the endmember parameters of the different vegetation-soil types by using the histogram method based on pixel decomposition model for estimating the regional scale forest coverage in the Three Gorges.And the results were verified using the 161 samples of field data in the Three Gorges Reservoir area,R2 was found to be 0.742 4~0.853 6,the estimated results are satisfactory.This method will provide a reference for remote sensing estimation of high-resolution forest coverage at regional scale.
Key words: Forest coverage    Pixel decomposition model    Histogram    Three Gorges    Remote sensing
收稿日期: 2018-02-28 出版日期: 2019-04-02
ZTFLH:  TP79  
基金资助: 国家气候变化专项“气候与CO2浓度变化对高寒植被影响遥感评估”(CCSF-14-06)、公益性行业专项第三次青藏高原大气科学试验课题“青藏高原卫星反演产品校验外场观测试验与产品改进与资料同化研究”(GYHY201406001-01)及国务院三峡办项目“三峡工程生态与环境遥感动态与实时监测”(SX2002-004)联合资助。
作者简介: 董立新(1973-),男,陕西岐山人,博士,副研究员,主要从事定量遥感应用研究。E-mail:dlx_water@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董立新. 基于直方图与像元分解模型的森林覆盖度遥感估算[J]. 遥感技术与应用, 2019, 34(1): 136-145.

Dong Lixin. Remote Sensing Estimation of Forest Coverage based on Histogram and Pixel Decomposition Model. Remote Sensing Technology and Application, 2019, 34(1): 136-145.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.1.0136        http://www.rsta.ac.cn/CN/Y2019/V34/I1/136

[1]Molero B,Merlin O,Malbeteau Y,et al.SMOS Disaggregated Soil Moisture Product at 1 km Resolution:Processor Overview and First Validation Results[J].Remote Sensing of Environment,2016,180:361-376. [2]Al-Yaari A,Wigneron J P,Ducharne A,et al.Global-Scale Comparison of Passive (SMOS)and Active (ASCAT)Satellite based Microwave Soil Moisture Retrievals with Soil Moisture Simulations (MERRA-Land)[J].Remote Sensing of Environment,2014,152:614-626. [3]Wang Zengyan,Wang Jian,Che Tao.Surface Soil Moisture Retrieval from Airborne L-band Microwave Radiometer Data[J].Remote Sensing Technology and Application,2017,32(2):185-194.[王增艳,王建,车涛.遥机载L波段微波辐射计数据反演表层土壤水分研究[J].遥感技术与应用,2017,32(2):185-194.] [4]Martinez-Fernandez J,Gonzalez-Zamora A,Sanchez N,et al.Satellite Soil Moisture for Agricultural Drought Monitoring:Assessment of the SMOS Derived Soil Water Deficit Index[J].Remote Sensing of Environment,2016,177:277-286. [5]Guo Ni,Wang Xiaoping.Advances and Developing Opportunities in Remote Sensing of Drought[J].Journal of Arid Meteorology,2015,33(1):1-18.[郭铌,王小平.遥感干旱应用技术进展及面临的技术问题与发展机遇[J].干旱气象,2015,33(1):1-18.] [6]Bai Yu,Meng Zhiguo,Zhao Ka,et al.Pixel-scalesoil Moisture Monitoring Network and Its Preliminary Validation of L-band Soil Moisture Product[J].Remote Sensing Technology and Application,2018,33(1):78-87.[白瑜,孟治国,赵凯,等.像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J].遥感技术与应用,2018,33(1):78-87.] [7]Mladenova I,Lakshmi V,Jackson T J,et al.Validation of AMSR-E Soil Moisture Using L-Band Airborne Radiometer Data from National Airborne Field Experiment 2006[J].Remote Sensing of Environment,2011,115(8):2096-2103. [8]Lin Libin,Bao Yansong,Zuo Quan,et al.Soil Moisture Retrieval over Vegetated Areas based on Sentinel-1 and FY-3C Data[J].Remote Sensing Technology and Application,2018,33(4):750-758.[林利斌,鲍艳松,左泉,等.基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J].遥感技术与应用,2018,33(4):750-758.] [9]Dorigo W A,Xaver A,Vreugdenhil M,et al.Global Automated Quality Control of In-situ Soil Moisture Data from the International Soil Moisture Network[J].Vadose Zone Journal,2013,12(3):918-924. [10]Wu Q S,Liu H X,WangL,et al.Evaluation of AMSR2 Soil Moisture Products over the Contiguous United States Using in Situ Data from the International Soil Moisture Network[J].International Journal of Applied Earth Observation and Geoinformation,2016,45:187-199. [11]Smith A B,Walker J P,Western A W,et al.The Murrumbidgee Soil Moisture Monitoring Network Data Set[J].Water Resources Research,2012,48(7):7701. [12]Jackson T J,Cosh M H,Bindlish R,et al.Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(12):4256-4272. [13]Al Bitar A,Leroux D,Kerr Y H,et al.Evaluation of SMOS Soil Moisture Products over Continental Us Using the Scan/Snotel Network[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1572-1586. [14]Yang Na,Cui Huizhen,Xiang Feng.Validation Study on SMOSL2 Soil Moisture Product on Agricultural Area of China[J].Journal of Henan Polytechnic University:Natural Science Edition,2015,34(2):287-291.[杨娜,崔慧珍,向峰.SMOSL2土壤水分数据产品在我国农区的验证[J].河南理工大学学报:自然科学版,2015,34(2):287-291.] [15]Lu Zheng,Chai Linna,Zhang Tao,et al.Evaluation of AMSR2 Retrievals Using Observation of Soil Moisture Network on the Upper and Middle Reaches of Heihe River Basin[J].Remote Sensing Technology and Application,2017,32(2):324-337.[陆峥,柴琳娜,张涛,等.AMSR2土壤水分产品在黑河流域中上游的验证[J].遥感技术与应用,2017,32(2):324-337.] [16]Xiang Yiheng,Zhang Mingmin,Zhang Lanhui,et al.Validation of SMOS Soil Moisture Products on Different VegetationTypes in Qilian Mountain[J].Remote Sensing Technology and Application,2017,32(5):835-843.[向怡衡,张明敏,张兰慧,等.祁连山区不同植被类型上的 SMOS遥感土壤水分产品质量评估[J].遥感技术与应用,2017,32(5):835-843.] [17]McColl K A,Roy A,Derksen C,et al.Triple Collocation for Binary and Categorical Variables:Application to Validating Landscape Freeze/Thaw Retrievals[J].Remote Sensing of Environment,2016,176:31-42. [18]Scipal K,Dorigo W,deJeu R,et al.Triple Collocation:A New Tool to Determine the Error Structure of Global Soil Moisture Products[C]∥IEEE International Geoscience and Remote Sensing Symposium,2010:4426-4429. [19]Stoffelen A.Toward the True Near-surface Wind Speed:Error Modeling and Calibration Using Triple Collocation[J].Journal of Geophysical Research-Oceans,1998,103(C4):7755-7766. [20]Vogelzang J,Stoffelen A,Verhoef A,et al.On the Quality of High-Resolution Scatterometer Winds[J].Journal of Geophysical Research-Oceans,2011,116(C10).doi:https://doi.org/10.1029/2010JC006640. [21]O'Carroll A G,Eyre J R,Saunders R W.Three-Way Error Analysis between Aatsr,AMSR-E,and In-situ Sea Surface Temperature Observations[J].Journal of Atmospheric and Oceanic Technology,2008,25(7):1197-1207. [22]Fang H,Wei S,Jiang C,et al.Theoretical Uncertainty Analysis of Global Modis,Cyclopes,and Globcarbon Lai Products Using a Triple Collocation Method[J].Remote Sensing of Environment,2012,124:610-621. [23]Scipal K,Holmes T,de Jeu R,et al.A Possible Solution for the Problem of Estimating the Error Structure of Global Soil Moisture Data Sets[J].Geophysical Research Letters,2008,35(24):101-106. [24]Leroux D J,Kerr Y H,Richaume P,et al.Spatial Distribution and Possible Sources of SMOS Errors at the Global Scale[J].Remote Sensing of Environment,2013,133:240-250. [25]Pierdicca N,Fascetti F,Pulvirenti L,et al.Analysis of Ascat,SMOS,In-situ and Land Model Soil Moisture as a Regionalized Variable over Europe and North Africa[J].Remote Sensing of Environment,2015,170:280-289. [26]Zhang X,Zhang T,Zhou P,et al.Validation Analysis of Smap and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements[J].Remote Sensing,2017,9(2):104. [27]Chakravorty A,Chahar B R,Sharma O P,et al.A Regional Scale Performance Evaluation of SMOS and ESA-CCI Soil Moisture Products over India with Simulated Soil Moisture from MERRA-Land[J].Remote Sensing of Environment,2016,186:514-527. [28]Rahmoune R,Ferrazzoli P,Kerr Y H,et al.SMOS Level 2 Retrieval Algorithm over Forests:Description and Generation of Global Maps[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2013,6(3):1430-1439. [29]Lievens H,Tomer S K,Al Bitar A,et al.SMOS Soil Moisture Assimilation for Improved Hydrologic Simulation in the Murray Darling Basin,Australia[J].Remote Sensing of Environment,2015,168:146-162. [30]Draper C,Mahfouf J F,Calvet J C,et al.Assimilation of Ascat near-Surface Soil Moisture into the Sim Hydrological Model over France[J].Hydrology and Earth System Sciences,2011,15(12):3829-3841. [31]Al-Yaari A,Wigneron J P,Ducharne A,et al.Global-Scale Evaluation of Two Satellite-based Passive Microwave Soil Moisture Datasets (SMOS and AMSR-E)with Respect to Land Data Assimilation System Estimates[J].Remote Sensing of Environment,2014,149:181-195. [32]dall'Amico J T,Schlenz F,Loew A,et al.First Results of SMOS Soil Moisture Validation in the Upper Danube Catchment[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1507-1516. [33]Kerr Y H,Al-Yaari A,Rodriguez-Fernandez N,et al.Overview of SMOS Performance in Terms of Global Soil Moisture Monitoring after Six Years in Operation[J].Remote Sensing of Environment,2016,180:40-63. [34]Scipal K,Drusch M,Wagner W.Assimilation of a Ers Scatterometer derived Soil Moisture Index in the Ecmwf Numerical Weal-Her Prediction System[J].Advances in Water Resources,2008,31(8):1101-1112. [35]Liu Y Y,Dorigo W A,Parinussa R M,et al.Trend-Preserving Blending of Passive and Active Microwave Soil Moisture Retrievals[J].Remote Sensing of Environment,2012,123:280-297. [36]Gruber A,Su C H,Crow W T,et al.Estimating Error Cross-Correlations in Soil Moisture Data Sets Using Extended Collocation Analysis[J].Journal of Geophysical Research Atmospheres,2016,121(3):1208-1219. [37]Kim S,Liu Y Y,Johnson F M,et al.A Global Comparison of Alternate AMSR2 Soil Moisture Products:Why Do They Differ?[J].Remote Sensing of Environment,2015,161:43-62. [38]Reichle R H,Liu Q,Koster R D,et al.Land Surface Precipitation in MERRA-2[J].Journal of Climate,2017,30(5):1643-1664. [39]Sawada Y,Tsutsui H,Koike T,et al.A Field Verification of an Algorithm for Retrieving Vegetation Water Content from Passive Microwave Observations[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(4):2082-2095. [40]Konings A G,Piles M,Das N,et al.L-band Vegetation Optical Depth and Effective Scattering Albedo Estimation from SMAP[J].Remote Sensing of Environment,2017,198:460-470. [41]Chen Y,Yang K,Qin J,et al.Evaluation of SMAP,SMOS,and AMSR2 Soil Moisture Retrievals Against Observations from Two Networks on the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres,2017,122(11):5780-5792. [42]Sawada Y,Tsutsui H,Koike T,et al.A Field Verification of an Algorithm for Retrieving Vegetation Water Content from Passive Microwave Observations[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(4):2082-2095. [43]Albergel C,Dorigo W,Reichle R H,et al.Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing[J].Journal of Hydrometeorology,2013,14(4):1259-1277.
[1] 向嘉敏, 祝善友, 张桂欣, 刘祎, 周洋. 灰霾遥感监测研究进展[J]. 遥感技术与应用, 2019, 34(1): 12-20.
[2] 鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.
[3] 迟文峰, 匡文慧, 党晓宏, 潘涛, 刘正佳. 基于遥感的内蒙古地级市土地覆盖结构时空变化特征分析[J]. 遥感技术与应用, 2019, 34(1): 33-45.
[4] 刘亲亲, 崔耀平, 刘素洁, 李楠. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
[5] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115-124.
[6] 蒋乔灵, 徐涵秋. GF-1 PMS2与GF-2 PMS2传感器数据的交互对比[J]. 遥感技术与应用, 2018, 33(6): 1084-1094.
[7] 张锴, 薛亮. 基于多源遥感数据的陕西2000~2015年城市扩展研究[J]. 遥感技术与应用, 2018, 33(6): 1170-1177.
[8] 郭瑞芳, 刘元波. 遥感降水数据精度检验策略及检验方法综述[J]. 遥感技术与应用, 2018, 33(6): 983-993.
[9] 李淑敏, 冯权泷, 梁其椿, 张学庆. 基于深度学习的国产高分遥感影像飞机目标自动检测[J]. 遥感技术与应用, 2018, 33(6): 1095-1102.
[10] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[11] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[12] 张晓峰, 吕晓琪, 张信雪, 张继凯, 王月明, 谷宇, 樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[13] 谢旭, 陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[14] 梅源, 王晶, 孙丽娜, 张旭东, 孟俊敏. 基于非线性薛定谔方程的高分三号图像内波参数反演[J]. 遥感技术与应用, 2018, 33(5): 915-922.
[15] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.