Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 822-828    DOI: 10.11873/j.issn.1004-0323.2019.4.0822
遥感应用     
卫星重力监测全球地下水储量变化及其特征
冯贵平1,2,3,4(),宋清涛2,3(),蒋兴伟2,3
1. 上海海洋大学海洋科学学院, 上海 201306
2. 国家卫星海洋应用中心, 北京 100081
3. 国家海洋局空间海洋遥感与应用研究重点实验室, 北京 100081
4. 清华大学地球系统科学中心, 北京 100084
Global Groundwater Storage Changes and Characteristics Observed by Satellite Gravimetry
Guiping Feng1,2,3,4(),Qingtao Song2,3(),Xinwei Jiang2,3
1. Shanghai Ocean University College of Marine Sciences, Shanghai 201306 China
2. National Satellite Ocean Application Service, Beijing 100081, China
3. Key Laboratory of Ocean Space Remote Sensing and Application, State Oceanic Administration, Beijing 100081, China
4. Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084, China
 全文: PDF(4414 KB)   HTML
摘要:

地下水储量是水资源管理和陆地表面过程与水循环研究的一个重要参数。然而,由于传统观测技术成本高和空间分辨率低等局限性,很难建立一个全球连续的综合地下水监测网,因此监测全球高时空分辨率的地下水储量及其变化仍是当前的一个挑战。2002年发射的低低卫—卫跟踪“重力恢复与气候试验”(GRACE)重力卫星为高分辨率地监测全球地下水储量及其变化,提供了一种新的可能手段。利用2002年8月~2011年2月的GRACE观测数据估计近10 a的月间隔全球陆地水总储存量,扣除了GLDAS水文模型(全球陆地数据同化系统)中的地表水、冰雪和生物水,得到全球地下水储量时间序列,并分析其季节性和长期变化及其特征。研究结果表明:GRACE探测到全球地下水储量具有明显的季节性变化,例如在南美洲的亚马逊河流域和亚洲中南部的周年振幅达到50 mm,而在澳大利亚南部和非洲北部的周年振幅只有10 mm左右。另外全球地下水储量具有明显的长期变化,如南美洲亚马逊河流域由于洪水造成地下水储量以6 mm/a的速率增加,拉普拉塔地区由于干旱造成地下水储量以7.5 mm/a的速率减少;中国新疆吐鲁番盆地地区的地下水储量以3.1 mm/a的速率减少,中国华北地区的地下水储量以4.8 mm/a的速率下降。

关键词: 地下水储量水循环GRACEGLDAS    
Abstract:

Groundwater storage is an important parameter in water resource manages and

research

of land-surface processes and hydrological cycle. However, the traditional instruments are very difficult to monitor global high temporal-spatial groundwater water storage and its variability without a comprehensive global monitoring network of hydrological parameters due to high cost and high labor intensity. The recent Gravity Recovery and Climate Experiment (GRACE) mission provides a unique opportunity to directly measure the global groundwater storage and its change at multi-scales from August 2002 to February 2011. In this paper, the global terrestrial water storages with monthly resolution are derived from approximate 10 years of monthly GRACE measurements (2002 August-2011 February), and the groundwater is obtained with subtracting the surface water, snow, ice and canopy water, from total terrestrial water storages using the GLDAS (Global Land Data Assimilation System) model. Results have shown that significant annual variations of groundwater storages are found at the globe with amplitude of up to 50 mm. in Southeast Asia, northern Amazon, while in South Australia and North Africa the annual amplitude is about 10 mm. The secular trends of groundwater storage are also observed at specific areas. For example, in northern Amazon, the groundwater storage is increasing at about 6mm/a due to recent floods, in La Plata, the groundwater storage is declining at about 7.5 mm/a because of drought, in Turpan Basin, the groundwater storage is declining at about 3.1 mm/a, and in North China Plain, the groundwater storage is declining at about 4.8 mm/a.

Key words: Groundwater storage    Water Cycle    GRACE    GLDAS
收稿日期: 2018-06-01 出版日期: 2019-10-16
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41276019);上海海洋大学科技发展基金(A2?0203?00?10022)
通讯作者: 宋清涛     E-mail: gpfeng@shou.edu.cn;qsong@mail.nsoas.org.cn
作者简介: 冯贵平(1988?),男,湖北宜昌人,讲师,主要从事卫星海洋遥感研究。E-mail:gpfeng@shou.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯贵平
宋清涛
蒋兴伟

引用本文:

冯贵平,宋清涛,蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.

Guiping Feng,Qingtao Song,Xinwei Jiang. Global Groundwater Storage Changes and Characteristics Observed by Satellite Gravimetry. Remote Sensing Technology and Application, 2019, 34(4): 822-828.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0822        http://www.rsta.ac.cn/CN/Y2019/V34/I4/822

图1  全球地下水储量的周年和半周年变化振幅与相位
图2  GRACE估计地下水储量的长期变化趋势
图3  中国地下水储量的长期变化趋势
图4  中国区域地下水量随时间的月变化值
1 TapleyB D, BettadpurS, RiesJ C, et al. GRACE Measurements of Mass Variability in the Earth System[J] Science, 2004, 305 (5683):503-505.
2 SwensonS, WahrJ. Methods for Inferring Regional Surface-mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-variable Gravity[J]. Journal of Geophysical Research Solid Earth, 2002, 107 (B9):2193.
3 RodellM, VelicognaI, FamigliettiJ S, Satellite-based Estimates of Groundwater Depletion in India [J]. Nature, 2009, 460 (7258) :999-1002.
4 FengGuiping,WangQimao,SongQingtao.Greenland Ice Sheet Mass Variations based on GRACE Satellite Gravitydata[J]. Haiyang Xuebao,2018,40(11):73-84.
4 冯贵平,王其茂,宋清涛.基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J].海洋学报,2018,40(11):73-84.
5 FengGuiping,SongQingtao,JiangXingwei,et al. Land Water and Glaciers Contributions to Global Sea Level Change from Satellite Gravity Measurements[J]. Haiyang Xuebao, 2018, 40(11):85-95.
5 冯贵平,宋清涛,蒋兴伟,等.卫星重力估计陆地水和冰川对全球海平面变化的贡献[J].海洋学报,2018,40(11):85-95.
6 YehJ F, SwensonS C, FamigliettiJ S, et al. Remote Sensing of Groundwater Storage Changes in Illinois Using the Gravity Recovery and Climate Experiment (GRACE)[J]. Water Resources Research, 2006, 42(12):395-397.
7 StrassbergG, ScanlonB R, ChambersD. Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States[J]. Water Resources Research, 2009, 45(5):195-211.
8 LuoZhicai, LiQiong, ZhongBo. Water Storage Variatioans in the Heihe River basin Recovered from GRACE Temporal Gravity Field[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):676-681.
8 罗志才,李琼,钟波.利用GRACE时变重力场反演黑河流域水储量变化[J].测绘学报,2012,41(15):676-681.
9 XieXiaowei, XuCaijun, GongZheng,et al. Groundwater Storage Changes in Shan-Gan-Jin Plateau Derived from GRACE[J]. Bulletin of Surveying and Mapping,2018(1):133-137.
9 谢小伟,许才军,龚正,等.利用GRACE反演陕甘晋高原地下水储量变化[J].测绘通报, 2018(1):133-137.
10 LiWanqiu, WangWei, ZhangChuanyin,et al. Monitoring Groundwater Storage Variations in the Guanzhong Area Using GRACE Satellite Gravity Data[J]. Chinese Journal Geophysics, 2018,61(6):2237-2245.
10 李婉秋,王伟,章传银,等.利用GRACE卫星重力数据监测关中地区地下水储量变化[J]. 地球物理学报, 2018,61(6):2237-2245.
11 SuXiaoli, PingJinsong, YeQixin. Terrestrial Water Variations in the North China Plain Revealed by the GRACE Mission[J]. Science in China (Earth Sciences), 2012, 42(6): 917-922.
11 苏晓莉,平劲松,叶其欣. GRACE卫星重力观测揭示华北地区陆地水量变化[J]. 中国科学: 地球科学, 2012, 42(6): 917-922.
12 FengWei, WangChangqing, MuDapeng, et al. Groundwater Storage Variations in the North China Plain from GRACE with Spatial Constraints[J]. Chinese Journal Geophysics.,2017,60(5): 1630-1642.
12 冯伟, 王长青, 穆大鹏,等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5):1630-1642.
13 ShuQiuyan, PanYun, GongHuili, et al. Spatiotemporal Analysis of GRACE-based Groundwater Storage Variation in North China Plain[J]. Remote Sensing for Land & Resources, 2018, 30(2): 132-137.
13 束秋妍,潘云,宫辉力,等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137.
14 WahrJ, MolenaarM, BryanF, Time Variability of the Earth’s Gravity Field:Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J].Journal of Geophysical Research Solid Earth, 1998, 103 (B12) :30205-30229.
15 GeruoA, WahrJ, ZhongS. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2):557-572.
16 RodellM, HouserP R, JamborU, et al. The Global Land Data Assimilation System [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.
17 JinS, FengG. Large-scale Variations of Global Groundwater from Satellite Gravimetry and Hydrological Models, 2002~2012[J]. Global & Planetary Change, 2013, 106(3):20-30.
[1] 曹艳萍,南卓铜 . 利用GRACE重力卫星监测黑河流域水储量变化[J]. 遥感技术与应用, 2011, 26(6): 719-727.
[2] 曹艳萍,南卓铜. GRACE重力卫星数据的水文应用综述[J]. 遥感技术与应用, 2011, 26(5): 543-553.