Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 892-900    DOI: 10.11873/j.issn.1004-0323.2019.4.0892
遥感应用     
基于单景高分四号卫星多光谱影像的舰船运动特征检测
张志新1(),徐清俊2,张川3,赵冬4
1. 水利部信息中心,北京 100053
2. 中国地质大学(北京),北京 100083
3. 核工业北京地质研究院,北京 100029
4. 深圳市勘察测绘院有限公司, 广东 深圳 518028
Ship Moving Feature Detection Using a Single GF⁃4 Multispectral Image
Zhixin Zhang1(),Qingjun Xu2,Chuan Zhang3,Dong Zhao4
1. Information Centre of the Ministry of Water Resources, Beijing 100053, China
2. China University of Geosciences (Beijing), Beijing 100083, China
3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
4. Shenzhen Geotechnical Investigation & Surveying Institute Co. , Ltd, Shenzhen 518028, China
 全文: PDF(9570 KB)   HTML
摘要:

高分辨率地球同步轨道(GEO)遥感卫星技术能够在短时间内对大范围海域进行高频重复监测,有望近实时地获取海上舰船运动特征。以广东省珠江伶仃洋的南部海域为研究区,基于单景高分四号卫星多光谱影像,使用梯度阈值方法对海上运动舰船进行检测,结果表明:①利用单波段高分四号多光谱影像能够检测出船位与航向,船位平均误差为80.46 m(相当于1.61个图像分辨单元),航向检出率为74.36%,航向绝对误差为8.65°。②利用单景高分四号影像能够检测出航向与船速,航向精度为98.96%,平均绝对误差为8.78°,船速精度为83.0%,平均绝对误差为1.41 m/s。研究表明高分四号卫星能够用于海上舰船近实时遥感监测,在海上舰船运动特征检测方面具有独特优势和巨大的应用潜力。

关键词: 地球同步轨道遥感卫星高分四号梯度阈值舰船运动特征    
Abstract:

High spatial resolution geosynchronous orbit (GEO) remote sensing satellite technology can carry out repeated high-frequency monitoring over a large maritime space and will obtain the real-time dynamic features of ships on the sea surface. In this study, a single GEO satellite GF-4 (Gaofen-4) multispectral image was used to detect moving ships on the southern Lingdingyang estuary of Zhujiang in Guangdong by using the gradient threshold method. The results revealed that: (1) the ship location and direction can be detected using a single-band image from GF-4 multispectral imagery, and the average error of ship location is about 80.46 m (equivalent to 1.61 image resolution cells). The detection rate of ship direction was about 74.36%, and the absolute error of the direction was about 8.65 degrees; (2) ship speed and direction can be detected using a single GF-4 multispectral image (multi-band collaborative detection), and the accuracy of direction detection is 98.96%, and the average absolute error is 8.78 degrees. The accuracy of navigational velocity detection is 83.0%, and the average absolute error is 1.41 m/s, as verified by AIS (Automatic Identification System, AIS) data. These showed that GF-4 satellite can be used for surveillance and monitoring of ships in near real-time, and has unique advantages and great potential in dynamic changes of ships on the sea.

Key words: Geosynchronous orbit (GEO) remote sensing satellite    GF-4    Gradient threshold    Dynamic changes of ships
收稿日期: 2018-03-23 出版日期: 2019-10-16
ZTFLH:  TP79  
基金资助: 水资源高效开发利用专项(2017YFC0405806);高分重大专项(民用部分)(08-Y30B07-9001-13/15);国家自然科学基金项目(41431174)
作者简介: 张志新(1985-),女,河北承德人,博士研究生,主要从事遥感图像处理、模拟仿真方面的研究。Email: zhangzx@mwr.gov.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张志新
徐清俊
张川
赵冬

引用本文:

张志新,徐清俊,张川,赵冬. 基于单景高分四号卫星多光谱影像的舰船运动特征检测[J]. 遥感技术与应用, 2019, 34(4): 892-900.

Zhixin Zhang,Qingjun Xu,Chuan Zhang,Dong Zhao. Ship Moving Feature Detection Using a Single GF⁃4 Multispectral Image. Remote Sensing Technology and Application, 2019, 34(4): 892-900.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0892        http://www.rsta.ac.cn/CN/Y2019/V34/I4/892

图1  研究区位置图
ID 波段

波长

/um

空间分辨率

/m

幅宽

/km

重访时间

/s

1

2

3

4

5

6

全色

蓝色

绿色

红色

近红外

中红外

0.45~0.90

0.45~0.52

0.52~0.60

0.63~0.69

0.76~0.90

3.50~4.10

50

50

50

50

50

400

500

500

500

500

500

400

20

20

20

20

20

20

表1  高分四号卫星技术参数
图2  GF-4单波段图像船舶检测梯度阈值法技术流程
图3  船只检查过程
图4  绿色波段(B3)波段舰船检测结果局部放大图
图5  检出的典型船只在影像各波段图像中的形状
图6  单景影像的全色波段(B1)、近红外波段(B5)成像期间运动舰船的图像位移
图7  影像成像时舰船的实测船位
图8  船位检测绝对误差与相应航行时间的相关性
图9  单景影像的绿色波段(B3)去除时差前后船位检测绝对误差与相应的航行时间
图10  单景影像的绿色波段(B3)航向检测结果与AIS航向记录的对比
图11  单景GF-4影像舰船航向、航速计算结果与AIS记录的对比图
1 Wang Yanqing , Wang Runsheng , Tian Yuan . State-of-the-art of Ship Detection and Recognition in Optical Remotely Sensed Imagery[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039.
1 王彦情, 王润生, 田园 . 光学遥感图像舰船目标检测与识别[J]. 自动化学报, 2011, 37(9): 1029-1039.
2 Heiselberg H . A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery [J]. Remote Sensing, 2016, 8(12): 1-11.
3 Corbane C , Najman L , Pecoul E , et al . A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery [J]. International Journal of Remote Sensing, 2010, 31(20): 5837-5854.
4 Bi F K , Liu F , Gao L M . A Hierarchical Salient-region based Algorithm for Ship Detection in Remote Sensing Images [J]. Lecture Notes in Electrical Engineering, 2010, 67: 729-738.
5 Zhou Hui , Guo Jun , Zhu Changren , et al . Ship Detection from Optical Remote Sensing Images based on PLSA Model[J]. Journal of Remote Sensing, 2010, 14(4): 663-680.
5 周辉, 郭军, 朱长仁, 等 . 引入PLSA模型的光学遥感图像舰船检测[J]. 遥感学报, 2010, 14(4): 663-680.
6 Bi F , Zhu B , Gao L , et al . A Visual Search Inspired Computational Model for Ship Detection in Optical Satellite Images [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 949-753.
7 Satyanarayana M S , Aparna G . A Method of Ship Detection from Spaceborne Optical Image [J]. International Journal of Advanced Computer and Mathematical Sciences, 2012, 3(4): 353-540.
8 Yang G , Lu Q C , Gao F . A Novel Ship Detection Method based on Sea State Analysis from Optical Imagery[C]∥International Conference on Image & Graphic, 2011: 466-471.
9 Yang G , Li B , Ji S , et al . Ship Detection from Optical Satellite Images based on Sea Surface Analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 641-645.
10 Prathima V R , Manasa C H . Ship Detection on Space Borne Image Using Machine Learning Techniques [J]. International Journal of Science and Research, 2013, 5(5): 369-373.
11 Guo Linghua , Deng Zheng , Tao Jiasheng , et al . Preliminary Research on Development of Foreign GEO Remote Sensing Satellites[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(6): 23-30.
11 郭玲华, 邓铮, 陶家生, 等 . 国外地球同步轨道遥感卫星发展初步研究[J]. 航天返回与遥感, 2010, 31(6): 23-30.
12 Yu Longjiang , Liu Yunhe . Development Analysis on GEO Civil Optical Earth Observation Satellites with Mid-high Resolution[J]. Spacecraft Engineering, 2013, 22(1): 106-112.
12 于龙江, 刘云鹤 . GEO中高分辨率民用光学对地观测卫星发展研究[J]. 航天器工程, 2013, 22(1): 106-112.
13 Tourneur C , Pawlak D , Sembely X . GEO-Africa: A Dedicated African Space Observatory [J]. 60th International Astronautical Congress. 2009, LAC( 2009 3: 2240-2247.
14 Liu Tao . Geostationary Orbiting High Resolution Optical Imaging Satellites in Great Potential for Marine Surveillance [J]. Satellite Applications, 2014(12): 70-74.
14 刘韬 . 静止轨道高分辨率光学成像卫星展示海洋监视的重大潜力[J]. 卫星应用, 2014(12): 70-74.
15 Meng Lingjie , Guo Ding , Tang Menghui , et al . Development Status and Prospect of High Resolution Imaging Satellite in Geostationary Orbit [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(4):7-15.
15 孟令杰, 郭丁, 唐梦辉, 等 . 地球静止轨道高分辨率成像卫星的发展现状与展望[J]. 航天返回与遥感, 2016, 37(4): 1-6.
16 Li Guo , Kong Xianghao , Liu Fengjing , et al . GF-4 Satellite Remote Sensing Technology Innovation [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(4):7-15.
16 李果, 孔祥皓, 刘凤晶, 等 . “高分四号”卫星遥感技术创新[J]. 航天返回与遥感, 2016, 37(4): 7-15.
17 Lian Minlong , Shi Zhicheng , Wang Yue , et al . Design and Verification of the Staring Camera on Board GF-4 Satellite [J]. Spacecraft Recovery & Remote Sensing , 2016, 37(4): 32-39.
17 练敏隆, 石志城, 王跃, 等 . “高分四号”卫星凝视相机设计与验证[J]. 航天返回与遥感, 2016, 37(4): 32-39.
18 Liu Yong , Yao Libo , Wu Yuzhou , et al . Target Point Tracks Association and Error Correction with Optical Satellite in Geostationary Orbit and Automatic Identification System [J]. Journal of Electronics & Information Technology, 2018, 40(7): 1546-1552.
18 刘勇, 姚力波, 吴昱舟, 等 . 静轨光学卫星与自动识别系统的目标点迹关联与误差校正[J]. 电子与信息学报, 2018, 40(7): 1546-1552.
19 Yao L B , Liu Y , He Y , et al . A Novel Ship-tracking Method for GF-4 Satellite Sequential Images [J]. Sensors, 2018, 18(7): 1-14.
20 Liu Y , Yao L B , Xiong W , et al . GF-4 Satellite and Automatic Identification System Data Fusion for Ship Tracking [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 281-285.
21 Zhang Z X , Shao Y , Tian W , et al . Application Potential of GF-4 Images for Dynamic Ship Monitoring [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 911-915.
22 Xu Xianyi . Analysis of the Coordination and the Avoidance of Lingding Channel [J]. China Water Transport, 2014, 14(11): 67-68.
22 徐献义 . 浅析伶仃航道的协调与避让[J]. 中国水运月刊, 2014, 14(11): 67-68.
23 Yi Kan , Gong Wenping . Lateral Circulation in the Liding Estuary [J]. Haiyang Xuebao, 2015, 37(3): 1-14.
23 易侃, 龚文平 . 伶仃洋河口横向环流[J]. 海洋学报, 2015, 37(3): 1-14.
24 Fan Hao . Two-way Navigation Capacity of the Lingding Channel of Guangzhou Port [J]. Shipping Management, 2009, 31(10): 14-16.
24 范浩 . 广州港伶仃航道的船舶双向通航能力[J]. 水运管理, 2009, 31(10): 14-16.
25 Ma Wenpo , Lian Minlong . Technical Characteristics of the Staring Camera on Board GF-4 Satellite [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(4): 26-31.
25 马文坡, 练敏隆 .“高分四号”卫星凝视相机的技术特点[J]. 航天返回与遥感, 2016, 37(4): 26-31.
26 Gu Xi , Li Jun . Investigation & Application of Automatic Identification System [J]. Journal of Nantong Vocation & Technical Shipping College, 2003, 2(1): 25-30.
26 谷溪, 李军 . 船舶自动识别系统(AIS)的研究和应用[J]. 南通航运职业技术学院学报, 2003, 2(1): 25-30.
[1] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[2] 黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.
[3] 张晓光,姜子璇,孔繁昌. 滨海盐渍土可见近红外高光谱特征[J]. 遥感技术与应用, 2019, 34(4): 816-821.
[4] 申祎,王超,胡佳乐. 一种结合空间与光谱信息的改进CVA变化检测方法[J]. 遥感技术与应用, 2019, 34(4): 799-806.
[5] 周壮,李盛阳,张康,邵雨阳. 基于CNN和农作物光谱纹理特征进行作物分布制图[J]. 遥感技术与应用, 2019, 34(4): 694-703.
[6] 刘天福,陈学泓,董琪,曹鑫,陈晋. 深度学习在GlobeLand30-2010产品分类精度优化中应用研究[J]. 遥感技术与应用, 2019, 34(4): 685-693.
[7] 李春江,沈国状,张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析[J]. 遥感技术与应用, 2019, 34(4): 839-846.
[8] 曾雅琦,王正海,秦昊洋,周桃勇. 结合EEMD和比值导数的岩石-植物混合波谱分解[J]. 遥感技术与应用, 2019, 34(4): 807-815.
[9] 苏华,张明慧,李静,陈修治,汪小钦. 基于光学与SAR因子的森林生物量多元回归估算[J]. 遥感技术与应用, 2019, 34(4): 847-856.
[10] 夏热帕提·阿不来提null,刘高焕,刘庆生,黄翀. 基于遥感与GIS技术的黄河宁蒙河段洪泛湿地生态环境脆弱性定量评价[J]. 遥感技术与应用, 2019, 34(4): 874-885.
[11] 冯贵平,宋清涛,蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
[12] 张蕴绮,巩应奎,习晓环,杨瑞霞,王成. 融合AHP和GIS技术的自然遗产地边界界定方法研究[J]. 遥感技术与应用, 2019, 34(4): 886-891.
[13] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[14] 林志玮,丁启禄,黄嘉航,涂伟豪,胡典,刘金福. 基于DenseNet的无人机光学图像树种分类研究[J]. 遥感技术与应用, 2019, 34(4): 704-711.
[15] 肖林 车涛 戴礼云. 多源雪深数据在中国的空间特征评估[J]. 遥感技术与应用, 0, (): 0-0.