Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 914-924    DOI: 10.11873/j.issn.1004-0323.2019.5.0914
林业遥感专栏     
三维辐射传输模型LESS原理及其应用
漆建波1,2(),谢东辉2,许月2,阎广建2
1.北京林业大学 省部共建森林培育与保护教育部重点实验室,北京 100083
2.北京师范大学 地理科学学部,北京 100875
Principles and Applications of the 3D Radiative Transfer Model LESS
Jianbo Qi1,2(),Donghui Xie2,Yue Xu2,Guangjian Yan2
1.The Key Laboratory for Silviculture and Conservation of Ministry of Education,Beijing Forestry University,Beijing 100083,China
2.Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
 全文: PDF(6161 KB)   HTML
摘要:

三维辐射传输模型能够准确地刻画太阳辐射与异质地表之间的相互作用,近年来已成为定量遥感建模与反演研究中的重要工具。LESS模型是基于光线追踪的三维真实冠层辐射传输模型,充分利用了光线追踪的前向追踪模式模拟能量平衡问题以及后向追踪模式模拟大尺度(公里级)遥感影像,从而实现在同一模型中多种遥感数据的模拟。目前,LESS模型可以模拟多角度反射率、多/高光谱影像、鱼眼相机、复杂地形区上下行短波辐射、冠层分层FPAR等数据,可以为验证物理模型、发展参数化模型以及训练神经网络模型等提供更为可靠的模拟数据集。本文主要介绍了LESS模型的基本原理和典型的应用。LESS模型可以从www.lessrt.org网站下载。

关键词: LESS光线追踪三维辐射传输真实场景    
Abstract:

Three-dimensional (3D) radiative transfer model can accurately describe the interactions between solar radiation and heterogeneous land surfaces. Recently, it has become an important tool for quantitative remote sensing studies. LESS is a ray-tracing based 3D radiative transfer model, which take full advantage of the forward ray-tracing techniques for simulating radiative budget and backward ray-tracing for simulating large-scale images, which makes it possible to simulate various remote sensing data in a single model. Currently, LESS can simulate multi-angle Bidirectional Reflectance Factor (BRF), multi-spectral/high-spectral images, fish-eye cameras, upwelling/downwelling shortwave radiation in rugged terrains and layered FPAR, etc. This simulated dataset can be used for validating physical modes, developing parameterized models, as well as training neural networks. This paper presents the fundamentals of LESS and its applications. LESS can be downloaded from www.lessrt.org.

Key words: LESS    Ray tracing    3D Radiative transfer    Realistic scene
收稿日期: 2019-09-11 出版日期: 2019-12-05
ZTFLH:  S771.8  
基金资助: 国家自然科学基金项目“植被遥感中多尺度复杂场景反射辐射的计算机模拟模型研究”(41571341)
作者简介: 漆建波(1989-),四川德阳人,博士,讲师,主要从事植被定量遥感研究。Email :jianboqi@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
漆建波
谢东辉
许月
阎广建

引用本文:

漆建波,谢东辉,许月,阎广建. 三维辐射传输模型LESS原理及其应用[J]. 遥感技术与应用, 2019, 34(5): 914-924.

Jianbo Qi,Donghui Xie,Yue Xu,Guangjian Yan. Principles and Applications of the 3D Radiative Transfer Model LESS. Remote Sensing Technology and Application, 2019, 34(5): 914-924.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.0914        http://www.rsta.ac.cn/CN/Y2019/V34/I5/914

图1  后向光线追踪表面散射计算过程
图2  后向光线追踪多次散射计算过程
图3  LESS模型主界面及典型功能
图4  LESS中运行Python脚本
图5  Onyx Tree生成的单木
图6  模拟影像与实测影像的对比
图7  复杂地形区LESS短波下行辐射模拟(Obsv表示观测值,LESS表示模拟值)
图8  LESS模拟FPAR模拟
图9  枝干对场景反射率的影响
1 Verhoef W. Light Scattering By Leaf Layers With Application To Canopy Reflectance Modeling: the SAIL model[J]. Remote Sensing of Environment, 1984, 16(2): 125-141.
2 C van der Tol, Verhoef W, Timmermans J, et al. An Integrated Model of Soil-Canopy Spectral Radiances, Photosynthesis, Fluorescence, Temperature and Energy Balance[J]. Biogeosciences, 2009, 6(12): 3109-3129.
3 Li X, Strahler A H. Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy[J].IEEE Transactions on Geoscience and Remote Sensing,1986,GE-24(6): 906-919.
4 Ni W, Li X, Woodcock C E, et al. An Analytical Hybrid Gort Model for Bidirectional Reflectance over Discontinuous Plant Canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 987-999.
5 Koetz B, Sun G, Morsdorf F, et al. Fusion of Imaging Spectrometer and Lidar Data over Combined Radiative Transfer Models For Forest Canopy Characterization[J]. Remote Sensing of Environment, 2007, 106(4): 449-459.
6 Zhu X, Skidmore A K, Darvishzadeh R, et al. Estimation of Forest Leaf Water Content through Inversion of A Radiative Transfer Model from Lidar And Hyperspectral Data[J]. International Journal of Applied Earth Observation and Geoinformation,2019, 74: 120-129.
7 Qin W, Gerstl S A. 3-D Scene Modeling of Semidesert Vegetation Cover And Its Radiation Regime[J]. Remote Sensing of Environment, 2000, 74(1): 145-162.
8 Huang H, Qin W, Liu Q. RAPID: A Radiosity Applicable to Porous Individual Objects for Directional Reflectance over Complex Vegetated Scenes[J]. Remote Sensing of Environment,2013, 132: 221-237.
9 Govaerts Y M, Verstraete M M. Raytran: A Monte Carlo Ray-Tracing Model to Compute Light Scattering in Three-Dimensional Heterogeneous Media[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 493-505.
10 Gastellu-Etchegorry J P, Martin E, Gascon F. DART: A 3D Model for Simulating Satellite Images and Studying Surface Radiation Budget[J]. International Journal of Remote Sensing, 2004, 25(1): 73-96.
11 Wang Zhangang, Zhuang Dafang, Ming Tao. Research on Simulation of the PAR Distribution in Tree Canopy[J]. Geo-Information Science,2008,10(6):697-702.
11 王占刚, 庄大方, 明涛. 林木冠层光合有效辐射分布模拟的研究[J]. 地球信息科学学报, 2008, 10(6): 697-702.
12 Lao Cailian. Three Dimensional Canopy Radiation Transfer Model based on Monte Carlo Ray Tracing[D]. Beijing: China Agricultural University, 2005.
12 劳彩莲. 基于蒙特卡罗光线跟踪方法的植物三维冠层辐射传输模型[D]. 北京:中国农业大学, 2005.
13 North P R J. Three-dimensional Forest Light Interaction Model Using a Monte Carlo Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 946-956.
14 Kobayashi H, Iwabuchi H. A Coupled 1-D Atmosphere and 3-D Canopy Radiative Transfer Model for Canopy Reflectance, Light Environment, and Photosynthesis Simulation in A Heterogeneous Landscape[J]. Remote Sensing of Environment, 2008, 112(1): 173-185.
15 Widlowski J L, Lavergne T, Pinty B, et al. Rayspread: A Virtual Laboratory for Rapid BRF Simulations over 3-D Plant Canopies[J]. Computational Methods in Transport, 2006: 211-231.
16 Zhao F, Dai X, Verhoef W, et al. FluorWPS: A Monte Carlo Ray-tracing Model to Compute Sun-Induced Chlorophyll Fluorescence of Three-dimensional Canopy[J]. Remote Sensing of Environment,2016, 187: 385-399.
17 Disney M I, Lewis P, North P. Monte Carlo Ray Tracing in Optical Canopy Reflectance Modelling[J]. Remote Sensing Reviews, 2000, 18(2-4): 163-196.
18 Goodenough A A, Brown S D. Dirsig5: Core Design and Implementation[C]∥SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2012: 83900H-83900H.
19 Pharr M, Jakob W, Humphreys G. Physically based Rendering: from Theory to Implementation[M]. San Francisco: Morgan Kaufmann, 2016.
20 Plachetka T. POV Ray: Persistence of Vision Parallel Raytracer[C]∥Spring Conference on Computer Graphics, Budmerice, Slovakia. 1998: 123-129.
21 Auer S, Hinz S, Bamler R. Ray-tracing Simulation Techniques for Understanding High-resolution SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445-1456.
22 Goodenough A A, Brown S D. DIRSIG5: Next-generation Remote Sensing Data and Image Simulation Framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4818-4833.
23 JAKOB W. Mitsuba Renderer[EB/OL]. , 2010.
24 Qi J, Xie D, Yin T, et al. LESS: Large-Scale Remote Sensing Data and Image Simulation Framework over Heterogeneous 3D Scenes[J]. Remote Sensing of Environment,2019, 221: 695-706.
25 Thompson R L, Goel N S. Two Models for Rapidly Calculating Bidirectional Reflectance of Complex Vegetation Scenes: Photon Spread (PS) Model And Statistical Photon Spread (Sps) Model[J]. Remote Sensing Reviews, 1998, 16(3): 157-207.
26 Veach E. Robust Monte Carlo Methods for Light Transport Simulation[D]. Palo Alto: Stanford University, 1997.
27 Schneider F D, Leiterer R, Morsdorf F, et al. Simulating Imaging Spectrometer Data: 3D Forest Modeling based on Lidar and In Situ Data[J]. Remote Sensing of Environment,2014, 152: 235-250.
28 Qi J, Xie D, Guo D, et al. A Large-scale Emulation System for Realistic Three-dimensional (3-D) Forest Simulation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4834-4843.
29 Xie D, Wang P, Liu R,et al. Research on PAR and FPAR of Crop Canopies based on RGM[C]∥2010 IEEE International Geoscience and Remote Sensing Symposium,2010:1493-1496.
[1] 叶雨洋,漆建波,曹颖,蒋靖怡. 基于LESS模型的异质植被冠层光合有效辐射吸收比与植被指数的关系研究[J]. 遥感技术与应用, 2023, 38(1): 51-65.
[2] 黄华国. 三维遥感机理模型RAPID原理及其应用[J]. 遥感技术与应用, 2019, 34(5): 901-913.