Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1155-1161    DOI: 10.11873/j.issn.1004-0323.2019.6.1155
冰雪遥感专栏     
高分辨率SAR影像提取冰川面积与冰面河
杨燕1,2,3(),李震4(),黄磊4,田帮森4
1.中国地质大学(武汉)国家地理信息系统工程技术研究中心,湖北 武汉 430074
2.自然资源部地质信息技术重点实验室,北京 100037
3.中国地质调查局发展研究中心,北京 100037
4.中国科学院遥感与数字地球研究所,北京 100094
Extraction of Glacier Area and Supraglacial Rivers Using High-resolution SAR Imagery
Yan Yang1,2,3(),Zhen Li4(),Lei Huang4,Bangsen Tian4
1.National Engineering Research Center for Geographic Information System, China University of Geosciences, Wuhan 430074, China
2.Key Laboratory for Geological Information Technology, Ministry of Natural Resources, Beijing 100037, China
3.Development Research Center,China Geological Survey,Beijing 100037, China
4.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
 全文: PDF(5533 KB)   HTML
摘要:

冰川面积变化是冰川积累与消融的直接体现,与气候变化密切相关。遥感的方法可以为冰川的轮廓及面积监测提供可靠手段,但常用的光学遥感容易受到冰川区多变气象条件的影响。合成孔径雷达(SAR)不受天气影响,尤其是高分辨率SAR影像能够提供冰川表面丰富的细节特征,更好地监测冰川变化。应用相位一致性方法和快速行进法相结合的方法提取冰川轮廓和表面纹理。依据提取的冰川轮廓计算的冰川面积误差在5%以下,表明该方法能够准确地提取冰川面积。同时,在高分辨率SAR图像上,利用提取的冰川表面纹理信息可以有效监测到光学图像上难以识别的冰面河,而冰面河与冰川中长期消融密切相关,提取的冰面河信息将为冰川监测提供一种新的视角。

关键词: SAR冰面河冰川面积相位一致性快速行进法    
Abstract:

The change of glacier area is the embodiment of the accumulation and ablation of glaciers, and it is closely related to the change of climate. The method of remote sensing provides reliable approach for monitoring glacier outlines and area, but the common method of optical remote sensing is easily affected by the changeable weather conditions in glacier area. Synthetic Aperture Radar (SAR) is not affected by the weather conditions, especially the high-resolution SAR imagery can provide abundant details on glacier surface and monitor the change of glacier better. In this paper, phase congruency method and fast marching method are used simultaneously to extract the glacier outlines and surface texture. The error of glacier area calculated from the extraction of glacier outlines was less than 5%, so it indicated that the method could extract glacier area accurately. Meanwhile, the extraction of glacier surface texture can be used to monitor effectively the supraglacial rivers, which is hard to visible in optical imagery, but is visible in high-resolution SAR imagery. Supraglacial rivers are closely related to medium and long term ablations of glacier, and they offer a new perspective for glacier monitoring.

Key words: SAR    Supraglacial rivers    Glacier area    Phase Congruency Method    Fast marching method
收稿日期: 2018-11-17 出版日期: 2020-03-23
ZTFLH:  P343.6  
基金资助: 国家自然科学基金项目“多层积雪相干散射模型与SAR参数反演”(41471065);国家自然科学基金项目“极化合成孔径雷达探测冰川表碛理论与方法研究”(41471307)
通讯作者: 李震     E-mail: yangyan@radi.ac.cn;lizhen@radi.ac.cn
作者简介: 杨 燕(1989-),女,河北保定人,工程师,博士研究生,主要从事地理信息系统和遥感图像处理研究。E?mail:yangyan@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨燕
李震
黄磊
田帮森

引用本文:

杨燕,李震,黄磊,田帮森. 高分辨率SAR影像提取冰川面积与冰面河[J]. 遥感技术与应用, 2019, 34(6): 1155-1161.

Yan Yang,Zhen Li,Lei Huang,Bangsen Tian. Extraction of Glacier Area and Supraglacial Rivers Using High-resolution SAR Imagery. Remote Sensing Technology and Application, 2019, 34(6): 1155-1161.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1155        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1155

图1  研究区高分一号的全色影像(红色实线为目视解译的冰川边界,所研究的冰川区域被标注为1至5号,以及DD和XD)
图2  提取轮廓和纹理流程图
图3  本文方法提取冰川边界与目视解译冰川边界比较图(背景图像是2014年的TerraSAR-X图像,红色表示目视解译冰川边界,蓝色表示本文方法提取边界图)

冰川

编号

目视解译冰川

面积/km2

本文方法提取

面积/km2

相对差异

/%

10.230 10.228 50.7
20.385 90.386 50.1
30.783 50.818 44.5
41.286 41.299 21.0
576.104 076.518 60.5
表1  本文方法提取冰川面积与目视解译冰川的面积对比
图4  冰川TerraSAR-X影像和表面纹理提取结果
图5  2014年拍摄的大冬克玛底冰川底部冰面河的照片
1 Nojarov P,Gachev E,Grunewald K. Recent Behavior and Possible Future Evolution of the Glacieret in the Cirque Golemiya Kazan in the Pirin Mountains under Conditions of Climate Warming[J]. Journal of Mountain Science,2019,16(1):19-32.
2 Marzeion B,Kaser G,Maussion F,et al. Limited Influence of Climate Change Mitigation on Short-term Glacier Mass Loss[J]. Nature Climate Change,2018,8(4):305-308.
3 Wang Jing,Qin Xiang,Li Zhenlin,et al. Glaciers Change Detection from 2004 to 2015 in the Daxueshan,Qilian MTS[J].Remote Sensing Technology and Application,2017,32(3): 490-498.
3 王晶, 秦翔, 李振林,等. 2004~2015年祁连山西段大雪山地区冰川变化[J].遥感技术与应用,2017,32(3): 490-498.
4 Wu Yubin,Liu Yonggang,Yi Chaolu,et al. Impact of Tibetan Glacier Change on the Asian Climate during the Last Glacial Maximum[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):162-173.
4 毋宇斌, 刘永岗, 易朝路,等. 末次冰盛期青藏高原冰川变化对亚洲气候的影响[J]. 北京大学学报:自然科学版, 2019,55(1):162-173.
5 Yangzong Zhaxi,Li Lin,Zhuo Ma,et al.Research on Glacier Change Monitoring in Nianchu River Basin[J].Remote Sensing Technology and Application,2017,32(6):1126-1131.
5 扎西央宗, 李林, 卓玛,等. 西藏年楚河流域冰川变化监测方法研究[J].遥感技术与应用,2017,32(6):1126-1131.
6 Zhang Zhen,Liu Shiyin,Wei Junfeng,et al. Mass Change of Glaciers in Mt.Qomolangma (Everest) Region from 1974 to 2012 as derived from Remote Sensing Data[J]. Remote Sensing Technology and Application,2018,33(4): 731-740.
6 张震, 刘时银, 魏俊锋,等. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用,2018,33(4): 731-740.
7 Kang Y,Karlstrom L,Smith L C, et al. Automated High-Resolution Satellite Image Registration Using Supraglacial Rivers on the Greenland Ice Sheet[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2017,99:1-12.
8 Huang L,Tian B S,Li Z,et al. Scattering Property Analysis of Supraglacial Debris Using Target Decomposition on Polarimetric SAR Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(5):1843-1852.
9 Touzi R,Lopes A,Bousquet P. A Statistical and Geometrical Edge Detector for SAR Images [J]. IEEE Transactions on Geoscience and Remote Sensing,1988,26(6): 764-773.
10 Oliver C,Blacknell D,White R. Optimum Edge Detection in SAR [J]. IEEE Proceedings-Radar, Sonar and Navigation,1996,143(1): 31-40.
11 Fjortoft R,Lopes A,Marthon P, et al. An Optimal Multiedge Detector for SAR Image Segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3): 793-802.
12 Liu liu,Yang Xuezhi,Zhou Fang,et al. Non-local Filtering for Polarimetric SAR Data based on Three Dimensional Patch Matching Wavelet Transform[J]. Journal of Remote Sensing,2017,21(2): 218-227.
12 刘留, 杨学志, 周芳,等. 3维块匹配小波变换的极化SAR非局部均值滤波[J]. 遥感学报, 2017, 21(2):218-227.
13 Tian Zhuangzhuang,Zhan Ronghui,Hu Jiemin, et al. SAR ATR based on Convolutional Neural Network[J] Journal of Radars, 2016,5(3):320-325.
13 田壮壮, 占荣辉, 胡杰民,等. 基于卷积神经网络的SAR图像目标识别研究[J].雷达学报,2016,5(3):320-325.
14 Wang Yu,Yang Yi,Wang Baoshan,et al. Building Segmentation in High Resolution Remote Sensing Image by Deep ResNet[J].Remote Sensing Technology and Application,2019,34(4):736-747.
14 王宇, 杨艺, 王宝山,等. 深度残差神经网络高分辨率遥感图像建筑物分割[J]. 遥感技术与应用,2019,34(4):736-747.
15 Zhou J M,Li Z,Tang Z H,et al. Estimation the Dongkemadi Glacier Thickness Change by ALOS/PALSAR[J]. IOP Conference Series: Earth and Environmental Science,2014,17:012132.doi:10.1088/1755-1315/1711/012132.
doi: 10.1088/1755-1315/1711/012132
16 Fujita K,Ageta Y,Jianchen P, et al. Mass Balance of Xiao Dongkemadi Glacier on the Central Tibetan Plateau from 1989 to 1995[J]. Annals of Glaciology,2017,31(1):159-163.
17 Morrone M C,Owens R A. Feature Detection from Local Energy[J]. Pattern Recognition Letters,1987,6(5): 303-313.
18 Venkatesh S,Owens R. An Energy Feature Detection Scheme[C]//ICIP'89:IEEE International Conference on Image Processing: Conference Proceedings, Singapore: IEEE,1989.
19 Kovesi P. Image Features from Phase Congruency[J]. Videre: Journal of Computer Vision Research,1999,1(3): 1-26.
20 Canny J. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
21 Otsu N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
22 Hassouna M S, Farag A A. MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9): 1563-1574.
23 Mandava R K,Katla M,Vundavilli P R. Application of Hybrid Fast Marching Method to Determine the Real-time Path for the Biped Robot[J]. Intelligent Service Robotics, 2019, 12(1):125-136.
[1] 李春江,沈国状,张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析[J]. 遥感技术与应用, 2019, 34(4): 839-846.
[2] 苏华,张明慧,李静,陈修治,汪小钦. 基于光学与SAR因子的森林生物量多元回归估算[J]. 遥感技术与应用, 2019, 34(4): 847-856.
[3] 徐梦竹, 徐佳, 邓鸿儒, 袁春琦. 基于全极化SAR影像的海岛地物分类[J]. 遥感技术与应用, 2019, 34(3): 647-654.
[4] 李春江, 沈国状, 张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析—以鄱阳湖湿地为例[J]. 遥感技术与应用, 2019, 34(2): 284-292.
[5] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293-302.
[6] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[7] 李姣姣, 刘玉, 陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[8] 王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018, 33(5): 942-955.
[9] 王常颖, 田德政, 韩园峰, 隋毅, 初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[10] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[11] 张程,张红,王超. 基于PCDM香农熵的全极化SAR图像船舶目标检测方法[J]. 遥感技术与应用, 2018, 33(3): 499-507.
[12] 刘建歌,慕德俊. 基于SAR影像海冰动态特征的提取方法[J]. 遥感技术与应用, 2018, 33(1): 55-60.
[13] 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983-997.
[14] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[15] 扎西央宗,李林,卓玛,冯岩,李学东,白玛央宗. 西藏年楚河流域冰川变化监测方法研究[J]. 遥感技术与应用, 2017, 32(6): 1126-1131.