Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1173-1180    DOI: 10.11873/j.issn.1004-0323.2019.6.1173
冰雪遥感专栏     
基于CryoSat-2雷达高度计青藏高原地区冰川高度变化提取方法对比
史建康1(),孙晓慧2,3
1.海南省环境科学研究院,海南 海口 570026
2.中国科学院遥感与数字地球研究所,北京 100094
3.中国科学院大学,北京 100049
Comparative Study on Extraction Methods of Glacier Height Change in Qinghai-Tibet Plateau based on CryoSat-2 Radar Altimeter
Jiankang Shi1(),Xiaohui Sun2,3
1.Hainan Research Academy of Environmental Sciences, Haikou 570026, China
2.Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100094, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3937 KB)   HTML
摘要:

基于2010~2016年CryoSat-2雷达高度计SARIn模式的Level 2测高数据,结合青藏高原地区冰川矢量数据以及全球GEDM数据,通过重叠脚印法、伪平面拟合法以及较新的曲面拟合法提取青藏高原地区典型冰川冰帽的高度变化值。结果表明:①CryoSat-2测高数据应用该3种方法提取山地冰川高度变化具备可行性;②提取高度变化的3种方法各有优劣,以此提供了提取山地冰川高度变化的方法选择的依据;③应用上述3种方法获取的青藏高原地区典型冰川冰帽2010~2016年的定量高度变化结果,绝大多数的冰川都处于消融状态且3种方法提取的高度变化结果增、减趋势一致。处于西昆仑山脉的中峰冰川、古里雅、土则岗目冰川缩减速率较慢,而帕米尔高原的慕士塔格冰川缩减略快,两者的缩减速度都趋于平缓。处于念青唐古拉山脉的来古、恰青冰川高度变化速率最大。

关键词: CryoSat-2冰川高度变化重叠脚印法伪平面拟合曲面拟合    
Abstract:

Based on the L2 level altimeter data in the SARIn mode of the CryoSat-2 from 2010 to 2016, combined with the glacier vector data of the Qinghai-Tibet Plateau and the global GEDM data, use the overlapping footprint method, pseudo-plane fitting method, and new method curved surface fitting to extract the height variation of typical glacier ice caps in the Qinghai-Tibet Plateau . The results show that: (1) CryoSat-2 altimetry data is feasible by using these three methods to extract height changes of mountain glaciers. (2) The three methods for extracting height changes have their own advantages and disadvantages, which provides the basis for the method selection for extracting the height variation of mountain glaciers. (3)The above three methods were used to obtain the quantitative height change results of typical glacier ice caps in the Qinghai-Tibet Plateau from 2010 to 2016. The results show that most of the glaciers are in ablation and the height change results of the three methods are almost the same. In the West Kunlun Mountains, the Zhongfeng Glacier, Guliya, and Tuzegangmu Glaciers have gentle reduce, while the Mushitage Glacier in the Palmy Plateau has shrunk slightly, but both are balance. And Laigu and Qiaqing glaciers in the Nianqing Tanggula have the fastest rate of change.

Key words: CryoSat-2    Glacier height changes    Overlapping footprint method    Pseudo-plane fitting method    Curved surface fitting method
收稿日期: 2018-10-23 出版日期: 2020-03-23
ZTFLH:  TP79  
基金资助: 中国科学院国际合作局对外合作重点项目(131X11KYSB20160061)
作者简介: 史建康(1980-),男 ,安徽利辛人,高级工程师,主要从事生态调查与评估研究。E?mail:stanking16888@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史建康
孙晓慧

引用本文:

史建康,孙晓慧. 基于CryoSat-2雷达高度计青藏高原地区冰川高度变化提取方法对比[J]. 遥感技术与应用, 2019, 34(6): 1173-1180.

Jiankang Shi,Xiaohui Sun. Comparative Study on Extraction Methods of Glacier Height Change in Qinghai-Tibet Plateau based on CryoSat-2 Radar Altimeter. Remote Sensing Technology and Application, 2019, 34(6): 1173-1180.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1173        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1173

图1  典型冰川冰帽的地理位置
图2  研究区冰川冰帽形状大小及中心经纬度
图3  冰川矢量数据
图4  技术流程图
图5  古里雅冰川CryoSat-2数据“脚印”分布图
图6  交叉轨道重叠脚印和重复轨道重叠脚印
冰川名称

验证数(DGPS)

(cm/a)

重叠脚印法

(cm/a)

重叠点对个数(过滤后)

伪平面拟合法

(cm/a)

曲面拟合

(cm/a)

纳木那尼-58.0(2009~2013)-46.9±34.0(2010~2013)3-43.0±20.2(2010~2013)-78.1±13.9(2010~2014)
抗物热-61.0(2009~2014)-95.0±29.8(2010~2015)1-51.0±5.7(2010~2015)-76.2±27.8(2010~2016)
古仁河口39.0(2011~2014)19.0±24.7(2011~2014)353.0±36.5(2011~2014)
表1  冰川高度变化验证结果
冰川

重叠脚印法

(单位: cm/a)

过滤后重叠点对个数

伪平面拟合法

(单位: cm/a)

曲面拟合

(单位:cm/a)

古里雅3.6±5.7620.6±2.9
郭德冰帽-50.4±7.05-42.3±3.2-19.5±0.17
康甲若冰川-20.0±9.5137.1±2.9
来古冰川-48.6±2.728-40.5±17.2-120.8±0.2
马兰冰帽-24.8±6.016-33.0±16.1-36.0±1.1
木孜塔格-108.2±1.68-68.3±6.1-106.2±0.1
慕士塔格冰川-8.6±1.836.5±1.2-19.3±1.4
恰青冰川-77.3±2.729-33.7±7.6-106.5±0.2
土则岗目-0.6±8.490.9±4.0-30.0±2.0
增冰川-6.9±9.518-9.4±9.1
中峰冰川-8.7±5.770-24.1±5.4
表2  典型冰川冰帽冰川高度变化结果
1 Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014.
2 Pachauri R K, Allen M R, Barros V R, et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I[R]. The II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014, 151.
3 Xu B, Cao J, Hansen J, et al. Black Soot and the Survival of Tibetan Glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22114-22118.
4 Yao Tandong, Qin Dahe, Shen Yongping,et al. Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature,2013,35(3):179-186.
4 姚檀栋, 秦大河, 沈永平,等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志, 2013, 35(3): 179-186.
5 Wang X,Siegert F, Zhou A G, et al. Glacier and Glacial Lake Changes and Their Relationship in the Context of Climate Change, Central Tibetan Plateau 1972–2010[J]. Global & Planetary Change, 2013, 111(12): 246-257.
6 Li Zhiguo, Yao Tandong, Ye Qinghua, et al. Monitoring Glacial Variations based on Remote Sensing in the Luozha Region , Eastern Himalayas , 1980~2007[J]. Geographical Research,2011,30(5):939-952.
6 李治国, 姚檀栋, 叶庆华,等. 1980~2007年喜马拉雅东段洛扎地区冰川变化遥感监测[J].地理研究, 2011, 30(5): 939-952.
7 Zhang Y, Liu S, Shangguan D, et al. Thinning and Shrinkage of Laohugou No.12 Glacier in the Western Qilian Mountains, China, from 1957 to 2007[J]. Journal of Mountain Science, 2012, 9(3): 343-350.
8 Helm V, Humbert A, Miller H. Elevation and Elevation Change of Greenland and Antarctica Derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1539-1559.
9 Slobbe D, Lindenbergh R, Ditmar P. Estimation of Volume Change Rates of Greenland's Ice Sheet from ICESat Data using Ooverlapping Footprints[J]. Remote Sensing of Environment, 2008, 112(12): 4204-4213.
10 Laxon S W, Giles K A, Ridout A L, et al. CryoSat‐2 Estimates of Arctic Sea Ice Thickness and Volume[J]. Geophysical Research Letters, 2013, 40(4): 732-737. doi:10.1088/1748-93261 aae3ec.
doi: 10.1088/1748-93261 aae3ec
11 Kwok R. Arctic Sea Ice Thickness, Volume, and Multi-year Ice Coverage: Losses and Coupled Variability (1958–2018)[J].Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aac3ee.
doi: 10.1088/1748-9326/aac3ee
12 Zong Jibiao,Ye Qinghua, Tian Lide. Recent Naimona’Nyi Glacier Surface Elevation Changes on the Tibetan Plateau Based on ICESat/GLAS, SRTM DEM and GPS Measurements(2000~2010)[J]. Chinese Science Bulletin,2014,59(21):2108-2118.
12 宗继彪, 叶庆华, 田立德,等. 基于ICESat/GLAS,SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000~2010年)[J].科学通报,2014,59(21):2108-2118.
13 Huang Tianjin. Spatial-temporal Changes of Glacier Thickness and Lake Level on the Qinghai-Tibetan Plateau[D]. Beijing: Institute of Remote Sensing and Digital Earth Chinese Academy Sciences, 2017.
13 黄田进. 青藏高原冰川厚度与湖泊水位的时空变化研究[D]. 北京:中国科学院遥感与数字地球研究所,2017.
14 Wouters B, Martin, Espaol A, et al. Dynamic Thinning of Glaciers on the Southern Antarctic Peninsula[J]. Science,2015,348(6237): 899-903.
15 Wei Xin, Li Fei, Zhang Shenkai,et al.CryoSat-2 Satellite Altimetry and Its Applicaton[J].Chinese Journal of Polar Research,2015,27(4):446-453.
15 魏鑫, 李斐, 张胜凯,等. CryoSat-2卫星测高计划及其应用[J].极地研究,2015,27(4):446-453.
16 Wang F, Bamber J L, Cheng X. Accuracy and Performance of CryoSat-2 SARIn Mode Data over Antarctica[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7):1516-1520.
17 Wang Fang.Accuracy Accessment, Analysis and the Application of Novel SAR/Interferometric Radar Altimeter over the Marginal Antarctic Ice Sheet[D].Beijing: Beijing Normal University.2015.
17 王芳. 新型干涉合成孔径雷达高度计在南极冰盖边缘地区观测精度评估分析及应用[D].北京:北京师范大学.2015.
18 Liu Shiyin, Guo Wanqin, Xu Junli, et al. The Second Glacier Inventory Dataset of China (Version 1.0)[Z]. Cold and Arid Regions Science Data Center at Lanzhou, 2014. doi:10.3972/glacier.001.2013.db.
doi: 10.3972/glacier.001.2013.db
18 刘时银, 郭万钦,许君利,等. 中国第二次冰川编目数据集(V1.0)[Z]. 寒区旱区科学数据中心, 2014. doi:10.3972/glacier.001.2013.db.
doi: 10.3972/glacier.001.2013.db
19 Moholdt G, Nuth C, Hagen J O, et al. Recent Elevation Changes of Svalbard Glaciers derived from ICESat laser Altimetry[J].Remote Sensing of Environment, 2010, 114(11): 2756-2767.
20 Huang T, Jia L, Menenti M, et al. A New Method to Estimate Changes in Glacier Surface Elevation based on Polynomial Fitting of Sparse ICESat—GLAS Footprints[J]. Sensors, 2017, 17(8): 1803.
21 Zhu Dayun.Changes of Ice Thickness for Typical Glaciers in Different Areas of Tibetan Plateau[D].Chongqing:Southwest University,2015.
21 朱大运.青藏高原不同地区典型冰川厚度变化研究[D].重庆:西南大学,2015.
22 Ye Qinghua, Cheng Weiming, Zhao Yongli,et al. A Review on the Research of Glacier Changes on the Tibetan Plateau by Remote Sensing Technologies[J].Journal of Geo-information Science, 2016,18(7):920-930.
22 叶庆华,程维明,赵永利,等.青藏高原冰川变化遥感监测研究综述[J].地球信息科学学报,2016,18(7):920-930.
23 Hu Fansheng. Remote Sensing Mmonitoring of Glacier Changes between Eastern Pamirs Plateau and Western Kunlun Mountains from 1976~2016[D]. Lanzhou: Lanzhou Univerisity,2018.
23 胡凡盛. 1976~2016年东帕米尔—西昆仑地区冰川变化遥感监测[D].兰州:兰州大学,2018.
24 Ji Qin. Glacier Variations in Response to Climate Change in the Himalaya during 1990~2015[D]. Lanzhou: Lanzhou Univerisity,2018.
24 冀琴. 冀琴. 1990~2015年喜马拉雅山冰川变化及其对气候波动的响应[D].兰州:兰州大学,2018.
[1] 王峰,尤红建,傅兴玉. 基于迭代高斯模型的干涉DEM滤波算法[J]. 遥感技术与应用, 2013, 28(2): 258-262.