Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 901-910    DOI: 10.11873/j.issn.1004-0323.2020.4.0901
数据与图像处理     
同化FY-3C/MWHTS观测资料反演的海面气压场对台风数值预报的影响
张子瑾1,2,3(),董晓龙1,2,3,4()
1.中国科学院国家空间科学中心 微波遥感技术重点实验室,北京 100190
2.中国科学院国家空间科学中心,北京 100190
3.中国科学院大学,北京 100049
4.国际空间科学研究所(北京),北京 100190
Influence of Assimilating the Sea Surface Pressure Fields Retrieved from FY-3C/MWHTS Data on Typhoon Forecasting
Zijin Zhang1,2,3(),Xiaolong Dong1,2,3,4()
1.Key Laboratory of Microwave Remote Sensing, Chinese Academy of Sciences, Beijing 100190, China
2.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.International Space Science Institute-Beijing, Beijing 100190, China
 全文: PDF(5948 KB)   HTML
摘要:

由中国风云三号C星(FY-3C)搭载的微波温湿探测仪(MWHTS)的亮温观测资料能够实时反演得到高分辨率、高精度的海面气压场。基于三维变分同化方法将FY-3C/MWHTS观测资料反演的海面气压场同化进入中尺度天气研究与预报(Weather Research and Forecasting, WRF)模式,以台风“Maria”和“Noru”为例,通过控制实验和同化试验的对比分析,探讨了同化反演的海面气压场对台风数值预报的影响。初始化敏感性试验结果表明,同化海面气压场使初始时刻台风中心气压与位置更接近实况,并且调整了台风初始温度场和风场的结构和分布。台风的数值预报结果表明:同化反演的海面气压场能够改进台风的路径和强度预报精度。

关键词: 海面气压FY-3C/MWHTS资料三维变分同化台风    
Abstract:

Using measurements with the Microwave Temperature and Humidity Sounder (MWHTS) onboard the Chinese Fengyun-3C satellite, real-time and high resolution sea surface pressure information can be retrived. Based on the three-dimensional variational assimilation (3DVAR) method, the retrieved sea pressure fields from FY-3C/MWHTS observations are assimilated into the Weather Research and Forecasting (WRF) model. The influence of the retrieved pressure fields on typhoon forecasting is discussed through the comparison between control experiment and assimilation experiment. Sensitivity experiments of typhoon Maria and Noru show that the assimilation of sea surface pressure fields makes the central pressure and central location closer to the actual value, and adjusts the structure and distribution of initial temperature fields and wind fields. The numerical prediction results show that the assimilation of the sea surface pressure fields can improve the accuracy of typhoon track and intensity prediction.

Key words: Sea surface pressure    FY-3C/MWHTS observations    3DVAR    Typhoon
收稿日期: 2019-05-05 出版日期: 2020-09-15
ZTFLH:  P407  
基金资助: 国家重点研发计划项目“地球科学观测与导航专项”(2017YFB0502800)
通讯作者: 董晓龙     E-mail: zijin_nssc@163.com;dongxiaolong@mirslab.cn
作者简介: 张子瑾(1992—),女,河南平顶山人,博士研究生,主要从事大气参数的定量遥感反演研究。E?mail: zijin_nssc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张子瑾
董晓龙

引用本文:

张子瑾,董晓龙. 同化FY-3C/MWHTS观测资料反演的海面气压场对台风数值预报的影响[J]. 遥感技术与应用, 2020, 35(4): 901-910.

Zijin Zhang,Xiaolong Dong. Influence of Assimilating the Sea Surface Pressure Fields Retrieved from FY-3C/MWHTS Data on Typhoon Forecasting. Remote Sensing Technology and Application, 2020, 35(4): 901-910.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0901        http://www.rsta.ac.cn/CN/Y2020/V35/I4/901

台风个例模式区域内观测像元数目质量控制后观测像元数目稀疏化处理后观测数目
Maria11 41411 3396 934
Noru10 69110 6047 017
表1  反演的海面气压数据的同化预处理情况
图1  反演的热带气旋区域海面气压与现场观测对比结果
图2  FY-3C/MWHTS亮温资料反演的海面气压场和NCEP FNL海面气压分析场(hPa)
台风时刻反演结果NCEP FNL数据CMA最佳路径数据
中心气压中心位置中心气压中心位置中心气压中心位置
Maria2018年7月7日12时939 hPa18.0° N, 140.3° E956 hPa18.0° N, 140.0° E935 hPa18.0° N, 140.3° E
Noru2017年8月2日12时950 hPa26.2° N, 135.8° E957 hPa26.0° N, 136.0° E950 hPa26.2° N, 135.6° E
表2  反演的台风Maria和Noru的中心气压和位置与NCEP FNL 数据以及CMA最佳路径数据的对比
图3  2018年7月7日12时CTRL和REXP试验的海面气压场(hPa)
图4  2018年7月7日12时CTRL和REXP试验的温度距平沿台风中心纬向垂直剖面图(K)
图5  2017年8月2日12时CTRL和REXP试验的温度距平沿台风中心纬向垂直剖面图(K)
图6  2018年7月7日12时CTRL和REXP试验的风速沿台风中心纬向垂直剖面图(m/s)
图7  2017年8月2日12时CTRL 和REXP试验的风速沿台风中心纬向垂直剖面图(m/s)
图8  2018年7月7日12时~7月10日12时台风Maria的实况和预报路径和2017年8月2日12时~8月5日12时台风Noru的实况和预报路径
台风试验路径预报均方根误差/km强度预报均方根误差/hPa
0~24 h24~48 h48~72 h0~24 h24~48 h48~72 h
MariaCTRL试验30.550.8105.628.324.517.1
REXP试验26.029.240.215.311.55.3
NoruCTRL试验24.551.427.88.66.021.8
REXP试验18.221.021.03.54.914.8
表3  台风Maria和Noru实况和预报的路径和强度的均方根误差
图9  2018年7月7日12时~7月10日12时台风Maria的实况和预报的中心气压值和2017年8月2日12时~8月5日12时台风Noru的实况和预报的中心气压值
1 Hu Tangao, Zhang Dengrong, Wang Jie, et al. Review of Typhoon Monitoring Technology based on Remote Sensing Satellite Data[J]. Remote Sensing Technology and Application, 2013, 28(6): 994-999.
1 胡潭高, 张登荣, 王洁,等. 基于遥感卫星资料的台风监测技术研究进展[J]. 遥感技术与应用, 2013, 28(6): 994-999.
2 Niu Xuexin. The Internal Force of Typhoon[J]. Chinese Journal of Atmospheric Sciences, 1983, 7(1): 42-49.
2 钮学新. 台风的内力[J]. 大气科学, 1983, 7(1): 42-49.
3 Zhao Huaisen. Judging the Development and Trend of Typhoon by the Central Pressure of Typhoon[J]. World Shipping, 1998, 2(6): 15-17.
3 赵怀森. 利用台风中心气压值判断台风发展和动向[J]. 世界海运, 1998, 2(6): 15-17.
4 Lei Xiaotu. The Dynamical Research of TC Structure on Movement[J]. Acta Oceanologica Sinica, 2002, 24(1): 35-46.
4 雷小途. 热带气旋的结构对其移动影响的动力分析[J]. 海洋学报, 2002, 24(1): 35-46.
5 Liu Lei, Fei Jianfang, Cheng Xiaoping. Impact of Different Variables on Typhoon Forecasting in 3D-Var[J]. Meteorologyand Disaster Reduction Research, 2008, 31(1): 29-34.
5 刘磊, 费建芳, 程小平. 三维变分同化中不同物理量对台风预报的影响[J]. 气象与减灾研究, 2008, 31(1): 29-34.
6 Wu Z, Jiang C, Deng B, et al. Sensitivity of WRF Simulated Typhoon Track and Intensity over the South China Sea to Horizontal and Vertical Resolutions[J]. Acta Oceanologica Sinica, 2019, 38(7): 74-83.
7 Li Qiuyang, Shen Feifei, Xu Dongmei, et al. Influence of Different Initial Fields on Numerical Simulation of Typhoon Saomai[J]. Meteorological Science and Technology, 2019, 47(3): 460-468.
7 李秋阳, 沈菲菲, 许冬梅,等. 不同初始场资料对台风“桑美”数值模拟的影响[J]. 气象科技, 2019, 47(3): 460-468.
8 Hock T F, Franklin J L. The NCAR GPS Dropwindsonde[J]. Bulletin of the American Meteorological Society, 1999, 80(3): 407-420. doi: 10.1175/1520-0477(1999)0802.0.CO;2.
doi: 10.1175/1520-0477(1999)0802.0.CO;2
9 Chan P W, Wu N G, Zhang C Z, et al. The First Complete Dropsonde Observation of a Tropical Cyclone over the South China Sea by the Hong Kong Observatory[J]. Weather, 2018, 73(7): 227-34. doi:10.1002/wea.3095.
doi: 10.1002/wea.3095
10 Brown R A,Levy G.Ocean Surface Pressure Fields from Satel-lite-Sensed Winds[J].Monthly Weather Review,1986,114(11):2197-2206. doi:10.1175/1520-0493(1986)1142.0.CO;2.
doi: 10.1175/1520-0493(1986)1142.0.CO;2
11 Zierden D F, Bourassa M A, O'Brien J J. Cyclone Surface Pressure Fields and Frontogenesis from NASA Scatterometer (NSCAT) Winds[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 23967-23981. doi:10.1029/2000jc900062.
doi: 10.1029/2000jc900062
12 Patoux J, Foster R C, Brown R A. An Evaluation of Scatterometer-derived Oceanic Surface Pressure Fields[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3): 835-852. doi:10.1175/2007jamc1683.1.
doi: 10.1175/2007jamc1683.1
13 Zhang Fan, Liu Yudi. Analysis on Sea Surface Pressure of the Typhoon Retrieved from Scatterometer Wind Data[J]. Progress in Natural Science, 2008, 18(11): 1288-1296.
13 张帆, 刘宇迪. 散射计风场反演的台风海平面气压场分析[J]. 自然科学进展, 2008, 18(11): 1288-1296.
14 Zhang Fan, Zhao Jiye. Comparison of the Retrieved Typhoon Sea Level Pressure Field with NCEP and Best Track Data[J]. Guangdong Meteorology, 2008, 30(1): 29-32.
14 张帆, 赵继业. 反演台风海平面气压场与NCEP及报文资料的对比[J]. 广东气象, 2008, 30(1): 29-32.
15 Zhang Liang, Huang Sixun, Du Huadong. A New Method of Retrieving Typhoon’s Sea Level Pressure Fields and Central Positions from Scatterometer-derived Sea Surface Winds[J]. Acta Physics Sinca, 2011, 60(11): 792-801.
15 张亮, 黄思训, 杜华栋. 散射计资料对台风海平面气压场的反演和定位的新方法研究[J]. 物理学报, 2011, 60(11): 792-801.
16 Zhang Z, Dong X, Liu L, et al. Retrieval of Barometric Pressure from Satellite Passive Microwave Observations over the Oceans[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4360-4372. doi:10.1029/2018JC013847.
doi: 10.1029/2018JC013847
17 Zhang Z, Dong X, Hon K.K,et al.Tropical Cyclone Surface Pressure Field Estimation Using Satellite Passive Microwave Observations over the Oceans[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 7854-7872. doi:10.1029/2019JC015136.
doi: 10.1029/2019JC015136
18 Zhang Zijin. Study on the Retrieval Theory and Method of Sea Surface Pessure Basing on Passive Microwave Observations[D]. Beijing: University of Chinese Academy of Sciences(National Space Science Center, Chinese Academy of Sciences), 2019.张子瑾. 基于被动微波探测的海面气压反演理论和方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019.
19 Barker D M, Huang W, Guo Y-R, et al. A Three-dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results[J]. Monthly Weather Review, 2004, 132(4): 897-914. doi:10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2.
doi: 10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2
20 Gu J, Xiao Q, Kuo Y, et al. Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System[J]. Advances in Atmospheric Sciences, 2005, 22(3): 415-427. doi:10.1007/bf02918755.
doi: 10.1007/bf02918755
21 Zaron E D. Introduction to Ocean Data Assimilation[M]. Berlin: Springer Netherlands, 2011.
22 Parrish D F, Derber J C. The National Meteorological Center's Spectral Statistical-interpolation Analysis System[J]. Monthly Weather Review, 1992, 120(8): 1747-1763. doi:10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2.
doi: 10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2
23 Jankov I, Gallus W A, Segal M, et al. The Impact of Dif-ferent WRF Model Physical Parameterizations and Their Interactions on Warm Season MCS Rainfall[J]. Weather and Forecasting, 2005, 20(6): 1048-1060. doi: 10.1175/WAF888.1.
doi: 10.1175/WAF888.1
24 Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model[J]. Journal of Applied Meteorology and Climatology, 2010, 49(9): 1831-1844. doi: 10.1175/2010jamc2432.1.
doi: 10.1175/2010jamc2432.1
[1] 郑宗生,胡晨雨,黄冬梅,邹国良,刘兆荣,宋巍. 基于迁移学习及气象卫星云图的台风等级分类研究[J]. 遥感技术与应用, 2020, 35(1): 202-210.
[2] 李娜,张升伟,何杰颖. 基于FY-3C MWHTS的台风降水反演算法研究[J]. 遥感技术与应用, 2019, 34(5): 1091-1100.
[3] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[4] 卢美圻,魏鸣. GPM资料在分析“彩虹”台风降水垂直结构中的应用[J]. 遥感技术与应用, 2017, 32(5): 904-912.
[5] 罗红霞,曹建华,王玲玲,张以山,戴声佩,李海亮. 基于HJ-1CCD的“纳沙”台风NDVI变化研究——以海南省为例[J]. 遥感技术与应用, 2013, 28(6): 1076-1082.
[6] 胡潭高,张登荣,王洁,张煜洲. 基于遥感卫星资料的台风监测技术研究进展[J]. 遥感技术与应用, 2013, 28(6): 994-999.
[7] 王毅,孙佳俊,韩永,项杰. 基于卫星云图的台风云系特征提取算法研究[J]. 遥感技术与应用, 2011, 26(3): 287-293.
[8] 刘松涛,张红雷,严 卫. 星载微波辐射计AMSR-E在台风分析中的应用[J]. 遥感技术与应用, 2007, 22(3): 351-355.