Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1167-1177    DOI: 10.11873/j.issn.1004-0323.2020.5.1167
遥感应用     
基于Sentinel-2波段/产品的图像云检测效果对比研究
王明1,2(),刘正佳1(),陈元琰2
1.中国科学院地理科学与资源研究所,北京 100101
2.广西师范大学计算机科学与信息工程学院,广西 桂林 541004
Comparsions of Image Cloud Detection Effect based on Sentinel-2 Bands/Products
Ming Wang1,2(),Zhengjia Liu1(),Yuanyan Chen2
1.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
2.College of Computer Science and Information Technology,GuangXi Normal University,Guilin 541004,China
 全文: PDF(4596 KB)   HTML
摘要:

高时空分辨率遥感影像对精细尺度土地利用和土地覆盖变化研究具有重要意义,然而云噪声的存在给影像的解译和分析带来了一定的挑战,因此云噪声检测作为一项基础性工作在影像解译与分析过程中扮演了非常重要的作用。QA60产品被广泛推荐为Sentinel-2卫星影像的常规云检测产品,然而,我们最近的研究发现基于QA60产品的云检测通常会出现明显的云噪声漏检测现象。为探索提高Sentinel-2卫星影像云噪声检测效果的方法,基于Google Earth Engine(GEE)平台,结合Sentinel-2卫星影像2A级(L2A)数据的2个云相关波段(B1和B9)以及4个产品(QA60、AOT、MSK_CLDPRB和SCL产品),设计相应分割算法,并以典型区为案例,从影像波段特性、云微物理学等角度分析了相关波段/产品云检测结果的空间分布格局及差异,并借助定量化指标对云检测效果进行评价。结果表明:①在云检测算法方面,B1和B9波段采用的动态阈值分割算法稳健性较好,检测结果能在一定程度上拟合其波段特性,并合理地表征相应波段的云噪声;②从云检测空间分布看,AOT产品效果较差,B9波段和QA60产品云检测可靠性较低,B1、SCL、MSK_CLDPRB 3个波段/产品的云检测潜力较强;③从评价结果看,B1波段的云检测效果最佳,对云噪声的敏感度高于其他云相关波段/产品,查准率、查全率、准确率和F1分数均大于0.90,稳健性最好。本文验证了气溶胶(B1)波段对云检测的精确性、稳健性和敏感程度,有望为进一步优化常规云检测算法提供新参考。

关键词: Sentinel-2Google Earth Engine气溶胶波段云检测方法    
Abstract:

Fine spatial and temporal resolution remote sensing images are of great significance for the study of fine scale land use and land cover change. However, the presence of cloud noise poses challenges to image interpretation and analysis. Therefore, cloud detection plays a very important role in image interpretation and analysis. The QA60 has been widely recommended as the cloud detection product for Sentinel-2 (S2) images. However, our recent research found that there was a obvious cloud noise omission in the cloud detection results based on the QA60 product. To improve the ability of the cloud noise detection in S2 satellite images, this study developed cloud segmentation algorithms based on two cloud-related bands (B1 and B9) and four products (QA60, AOT, MSK_CLDPRB and SCL products) of 2A-level (L2A) data with the help of Google Earth Engine (GEE) platform. By taking three typical regions as cases, we investigated the spatial patterns and differences of different cloud detection results from the perspectives of image band characteristics and cloud microphysics. Further, we also evaluated accuracies of the different cloud detection reults. Results showed that: (1) From the perspective of cloud detection algorithm, the dynamic threshold segmentation algorithms used in B1 and B9 bands presneted the good robustness. And the detection results could largely match characteristics of corresponding bands and reasonably captured the cloud patterns. (2) For the spatial distributions of cloud, a relatively poor performance was observed in AOT product. The reliabilities of B9 band and QA60 product were relatively low. By contrast, the cloud detection potentials of B1, SCL and MSK_CLDPRB were much stronger. (3) B1 band gave the best cloud detection effect, and its sensitivity was much stronger than those of other cloud-related bands/products. Also user’s accuracy, product’s accuracy, overall accuracy and F1 score were all greater than 0.90, implying the robustest performance. This study estimated the accuracy, robustness and sensitivity of B1 (i.e. aerosol band) for cloud detection of S2 images. These findings are expected to provide some new references for further optimizing the cloud detection of satellite images.

Key words: Sentinel-2    Google Earth Engine (GEE)    Aerosol band    Cloud detection algorithms
收稿日期: 2019-10-20 出版日期: 2020-11-26
ZTFLH:  TP75  
基金资助: 国家自然科学基金项目(41971218);国家重点研发计划项目(2017YFC0504701)
通讯作者: 刘正佳     E-mail: 1964533558@qq.com;liuzj@igsnrr.ac.cn
作者简介: 王明(1995—),男,山东泰安人,硕士研究生,主要从事GIS应用和遥感土地利用方面的研究。E?mail:1964533558@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王明
刘正佳
陈元琰

引用本文:

王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5): 1167-1177.

Ming Wang,Zhengjia Liu,Yuanyan Chen. Comparsions of Image Cloud Detection Effect based on Sentinel-2 Bands/Products. Remote Sensing Technology and Application, 2020, 35(5): 1167-1177.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1167        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1167

图1  3个典型研究区空间位置
研究区影像数据传感器成像时间中心坐标尺寸大小
典型 区域1

Sentinel-2,

Level-2A

MSI2019-08-24

101.30? E,

36.40? N

1 447×1 447
典型 区域2

Sentinel-2,

Level-2A

MSI2019-08-06

112.60? E,

40.40? N

1 167×1 167
典型 区域3

Sentinel-2,

Level-2A

MSI2019-08-12

123.70? E,

46.80? N

1 267×1 267
表 1  研究所用遥感影像
名称信息分辨率/m

中心波长/nm

S2A/S2B

波段B1气溶胶60443.90 / 442.30
B2蓝光10496.60 / 492.10
B3绿光10560.00 / 559.00
B4红光10664.50 / 665.00
B9水蒸气60945.00 / 943.20
产品QA60云掩膜60-
AOT气溶胶光学厚度10-
MSK_CLDPRB云概率图20-
SCL景观分类图20-
表2  研究所用影像波段/产品
图2  云检测技术路线图
图3  典型区域1云检测空间格局
图4  典型区域2云检测空间格局
图5  典型区域3云检测空间格局
研究区

云检测波

段/产品

查准率查全率准确率F1分数
典型区域1AOT-0.000.49-
QA601.000.800.900.89
B90.900.900.900.90
MSK_CLDPRB0.990.890.940.94
SCL0.980.920.950.95*
B10.960.970.970.97*
典型区域2AOT0.000.000.73-
QA600.990.560.880.72
B90.630.880.830.73
MSK_CLDPRB0.970.810.940.88
SCL0.950.820.940.88
B10.900.950.960.92
典型区域3AOT0.030.010.480.01
QA600.970.840.910.90
B90.930.900.920.91
MSK_CLDPRB0.790.990.880.88
SCL0.840.980.900.90
B10.990.910.950.95*
表3  云检测效果评价
1 Yan Qing,Liang Dong,Zhang Jingjing.Improved Algorithm for Removing Thin Cloud in Single Remote Sensing Image[J].Journal of Computer Applications, 2011, 31(5): 1227-1229.
1 阎庆,梁栋,张晶晶.单幅遥感图像去除薄云算法的改进[J].计算机应用, 2011,31(5):1227-1229.
2 Zhang Bing.A Survey of Developments on Optical Remote Sensing Information Technology and Applications[J].Journal of Nanjing University of Information Science & Technology,2018, 10(1):1-5.
2 张兵.光学遥感信息技术与应用研究综述[J].南京信息工程大学学报(自然科学版),2018, 10(1):1-5.
3 Lu Yajun,Chen Gangyi,Gong Kejian,et al.Overview of Researches on Cloud Sounding Methods[J].Meteorological Science and Technology,2012,40(5):689-697.
3 陆雅君,陈刚毅,龚克坚,等.测云方法研究进展[J].气象科技,2012,40(5):689-697.
4 Wang Zhongting,Chen Liangfu,Zhang Ying,et al.Urban Surface Aerosol Monitoring Using DDV Method from MODIS Data[J].Remote Sensing Technology And Application,2008, 23(3):284-288.
4 王中挺,陈良富,张莹,等.利用MODIS数据监测北京地区气溶胶[J].遥感技术与应用,2008,23(3):284-288.
5 Fang Li,Yu Tao,Gu Xingfa,et al.Aerosol Retrieval and Atmospheric Correction of HJ-1 CCD Data over Beijing[J].Journal of Remote Sensing,2013, 17(1):151-164.
5 方莉,余涛,顾行发,等.北京地区HJ-1卫星CCD数据的气溶胶反演及在大气校正中的应用[J].遥感学报,2013, 17(1):151-164.
6 Kang Yifei,Pan Li,Sun Mingwei,et al.Gaussian Mixture Model based Cloud Detection for Chinese High Resolution Satellite Imagery[J].Geomatics and Information Science of Wuhan University,2017,42(6):782-788.
6 康一飞,潘励,孙明伟,等.基于高斯混合模型法的国产高分辨率卫星影像云检测[J].武汉大学学报(信息科学版),2017,42(6):782-788.
7 Li Wei,Fang Shenghui,Yuanyong Dian ,et al.Cloud Detection in MODIS Data based on Spectrum Analysis[J].Geomatics and Information Science of Wuhan University,2005, 30(5):435-438.
7 李微,方圣辉,佃袁勇,等.基于光谱分析的MODIS云检测算法研究[J].武汉大学学报(信息科学版),2005,30(5):435-438.
8 Hughes M,Hayes D.Automated Detection of Cloud and Cloud Shadow in Single-date Landsat Imagery Using Neural Networks and Spatial Post-Processing[J].Remote Sensing,2014,6(6):4907-4926.
9 Wang M,Liu Z,Baig M H A,et al.Mapping Sugarcane in Complex Landscapes by Integrating Multi-temporal Sentinel-2 Images and Machine Learning Algorithms[J].Land Use Policy,2019,88:104190. doi:10.1016/j.landusepol.2019. 104190.
doi: 10.1016/j.landusepol.2019. 104190
10 Richard R.Landsat 7 Automatic Cloud Cover Assessment[J].Proceedings of SPIE - The International Society for Optical Engineering,2000,4049:348-355. doi: 10.1117/12.410358.
doi: 10.1117/12.410358
11 Fang Wei,Qiao Yanli,Zhang Dongying,et al.Threshold Optimization in Cloud Detection by Polarized Multichannel Remote Sensing[J].Acta Optica Sinica,2019, 38(12):386-393.
11 方薇,乔延利,张冬英,等.偏振多通道遥感云检测的阈值优化[J].光学学报,2019, 38(12):386-393.
12 Feng Shuyi,Zhang Ning,Shen Ji,et al.Method of Cloud Detection with Hyperspectral Remote Sensing Image based on the Reflective Characteristics[J].Chinese Journal of Optics,2015,8(2):198-204.
12 冯书谊,张宁,沈霁,等.基于反射率特性的高光谱遥感图像云检测方法研究[J].中国光学,2015,8(2):198-204.
13 Shan Na,Zheng Tianyao,Wang Zhensong.High-speed and High-accuracy Algorithm for Cloud Detection and Its Application[J].Journal of Remote Sensing,2009,13(6):1138-1155.
13 单娜,郑天垚,王贞松.快速高准确度云检测算法及其应用[J].遥感学报,2009,13(6):1138-1155.
14 Yu Wenxia,Cao Xiaoguang,Xu Lin,et al.Automatic Cloud Detection for Remote Sensing Image[J].Chinese Journal of Scientific Instrument,2006,27(z3):2184-2186.
14 郁文霞,曹晓光,徐琳,等.遥感图像云自动检测[J].仪器仪表学报,2006,27(z3):2184-2186.
15 Chen Zhenwei,Zhang Guo,Ning Jinsheng,et al.An Automatic Cloud Detection Method for ZY-3 Satellite[J].Acta Geodaetica et Cartographica Sinica,2015,44(3):292-300.
15 陈振炜,张过,宁津生,等.资源三号测绘卫星自动云检测[J].测绘学报,2015,44(3):292-300.
16 Li Z,Shen H,Li H,et al.Multi-feature Combined Cloud and Cloud Shadow Detection in Gaofen-1 Wide Field of View Imagery[J].Remote Sensing of Environment,2017,191:342-358.doi: 10.1016/j.rse.2017.01.026.
doi: 10.1016/j.rse.2017.01.026
17 Zhao Xiao,Hou Qingyu,Liang Bingbing,et al.A Method For Cloud Detection in High-resolution Remote Sensing Image based on Multi-attribute Fusion[J].Optical Technique,2014,40(2):145-150.
17 赵晓,侯晴宇,梁冰冰,等.基于多属性融合的高分辨率遥感图像云检测方法[J].光学技术,2014,40(2):145-150.
18 Xia Yu,Cui Shengcheng,Yang Shizhi.Cloud Detection Method for High Resolution Satellite Image based on Multi-dimensional Features[J].Journal of Atmospheric and Environmental Optics,2017,12(6):465-473.
18 夏雨,崔生成,杨世植.综合高分卫星图像多维特征的云检测方法[J].大气与环境光学学报,2017,12(6):465-473.
19 Hu Gensheng,Chen Changchun,Zhang Xuemin,et al.Cloud Detection for Remote Sensing Multi-spectral Image based on Least Squares Wavelet Twin Support Vector Machines[J].Journal of Anhui University(Natural Sciences Edition),2014,38(1):48-55.
19 胡根生,陈长春,张学敏,等.LS-WTSVM的遥感多光谱影像云检测[J].安徽大学学报(自科版),2014,38(1):48-55.
20 Yuan Y,Hu X.Bag-of-Words and Object-based Classification for Cloud Extraction from Satellite Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2015,8(8):4197-4205.
21 Sun Ruxing,Fan Rongshuang.Multi-feature Fusion Image Cloud Detection based on SVM[J].Geomatics & Spatial Information Technology,2018,41(6):153-156,160.
21 孙汝星,范荣双.基于支持向量机的多特征融合影像云检测[J].测绘与空间地理信息,2018,41(6):153-156,160.
22 Chen Yang,Fan Rongshuang,Wang Jingxue,et al.Cloud Detection of ZY-3 Satellite Remote Sensing Images based on Deep Learning[J].Acta Optica Sinica,2018,38(1):354-359.
22 陈洋,范荣双,王竞雪,等.基于深度学习的资源三号卫星遥感影像云检测方法[J].光学学报,2018,38(1):354-359.
23 Pei Liang,Liu Yang,Tan Hai,et al.Cloud Detection of ZY-3 Satellite Remote Sensing Images based on Improved Fully Convolutional Neural Networks[J].Laser & Optoelectronics Progress,2019,56(5):218-225.
23 裴亮,刘阳,谭海,等.基于改进的全卷积神经网络的资源三号遥感影像云检测[J].激光与光电子学进展,2019,56(5):218-225.
24 Zhu Z,Woodcock C E.Object-based Cloud and Cloud Shadow Detection in Landsat Imagery[J].Remote Sensing of Environment,2012,118:83-94.doi:10.1016/j.rse.2011.10.028.
doi: 10.1016/j.rse.2011.10.028
25 Zhu Z,Wang S,Woodcock C E.Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4-7, 8, and Sentinel 2 Images[J].Remote Sensing of Environment,2015,159:269-277.doi:10.1016/j.rse.2014.12.014.
doi: 10.1016/j.rse.2014.12.014
26 Frantz D,Haß E,Uhl A,et al.Improvement of the Fmask Algorithm for Sentinel-2 Images: Separating Clouds from Bright Surfaces based on Parallax Effects[J].Remote Sensing of Environment,2018:S0034425718302037.doi:10.1016/j.rse.2018. 04.046.
doi: 10.1016/j.rse.2018. 04.046
27 Berger M,Moreno J,Johannessen J A,et al.ESA's Sentinel Missions in Support of Earth System Science[J].Remote Sensing of Environment,2012,120:84-90. doi:10.1016/j.rse.2011.07.023.
doi: 10.1016/j.rse.2011.07.023
28 Drusch M,Del Bello U,Carlier S,et al.Sentinel-2: ESA's Optical High-resolution Mission for GMES Operational Services[J].Remote Sensing of Environment,2012,120:25-36. doi:10.1016/j.rse.2011.11.026.
doi: 10.1016/j.rse.2011.11.026
29 Twomey S.Aerosols, Clouds and Radiation[J].Atmospheric Environment.Part A.General Topics,1991,25(11):2435-2442.
30 Novakov T,Penner J E.Large Contribution of Organic Aerosols to Cloud-condensation-nuclei Concentrations[J].Nature,1993,365(6449):823-826.
31 Zhang Zhe,Ding Jianli,Wang Jinjie.Spatio-temporal Variations and Potential Diffusion Characteristics of Dust Aerosol Originating from Central Asia[J].Acta Geographica Sinica,2017,72(3):507-520.
31 张喆,丁建丽,王瑾杰.中亚沙尘气溶胶时空分布特征及潜在扩散特性分析[J].地理学报,2017,72(3):507-520.
32 Guo Hong,Gu Xingfa,Xie Donghai,et al.A Review of Atmospheric Aerosol Research by Using Polarization Remote Sensing[J].Spectroscopy and Spectral Analysis,2014,34(7):1873-1880.
32 郭红,顾行发,谢东海,等.大气气溶胶偏振遥感研究进展[J].光谱学与光谱分析,2014,34(7):1873-1880.
33 Ulrich P S.Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects[J].Angewandte Chemie International Edition,2006,44(46):7520-7540.
34 Albrecht B A.Aerosols, Cloud Microphysics, and Fractional Cloudiness[J].Science,1989,245(4923):1227-1230.
35 Hess M,Koepke P,Schult I.Optical Properties of Aerosols and Clouds: The Software Package OPAC[J].Bulletin of the American Meteorological Society,1998,79(5):831-844.
36 Chen Hao,Gu Xingfa,Cheng Tianhai,et al.Characteristics of Aerosol Types over China[J].Journal of Remote Sensing,2013,17(6):1559-1571.
36 陈好,顾行发,程天海,等.中国地区气溶胶类型特性分析[J].遥感学报,2013,17(6):1559-1571.
37 King M D,Kaufman Y J,Tanré D,et al.Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future[J].Bulletin of the American Meteorological Society,1999,80(11):2229-2260.
38 Moosmüller H,Chakrabarty R K,Arnott W P.Aerosol Light Absorption and Its Measurement: A Review[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110(11):844-878.
39 Ye Jing,Li Wanbiao,Liu Huizhi,et al.The Study on the Improvement of Cloud Mask Product of MODIS based on the Detection of Dust Aerosols in Northern China[J].Journal of Tropical Meteorology,2010,26(5):563-570.
39 叶晶,李万彪,刘辉志,等.基于沙尘气溶胶识别的中国北方地区MODIS云检测产品的改进研究[J].热带气象学报,2010,26(5):563-570.
40 Han Jie,Yang Leiku,Xie Yujuan,et al.Cloud Detection on HJ-1B Data based on Multispectral Analysis[J].Science of Surveying and Mapping,2013, 38(1):150-152.
40 韩杰,杨磊库,谢玉娟,等.基于多光谱分析的HJ-1B数据云检测算法[J].测绘科学,2013, 38(1):150-152.
41 Song Xiaoning,Zhao Yingshi.Cloud Detection and Analysis of MODIS Image[J].Journal of Image and Graphics,2003,8(9):1079-1083.
41 宋小宁,赵英时.MODIS图象的云检测及分析[J].中国图象图形学报,2003,8(9):1079-1083.
42 Takahito I,Ryo Y.Algorithm Theoretical Basis for Himawari-8 Cloud Mask Product[J]. Meteorological Satellite Center Technical Note,2016,61:1-17.
43 Iwabuchi H,Putri N S,Saito M,et al.Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8[J]. Journal of the Meteorological Society of Japan.Ser.II, 2017, 96:27-42.doi:10.2151/jmsj.2018-001.
doi: 10.2151/jmsj.2018-001
44 Brennan J I,Kaufman Y J,Koren I,et al.Aerosol-cloud Interaction-misclassification of MODIS Clouds in Heavy Aerosol[J].IEEE Transactions on Geoscience & Remote Sensing,2005,43(4):911. doi:10.1109/TGRS.2005.844662.
doi: 10.1109/TGRS.2005.844662
45 Lv Mingming,Han Lijian,Tian Shufang,et al.Cloud Detection Under Varied Surfaces and Atmospheric Conditions with MODIS Imagery[J].Journal of Remote Sensing,2016,20(6):1371-1380.
45 吕明明,韩立建,田淑芳,等.多样地表和大气状况下的 MODIS 数据云检测[J].遥感学报,2016,20(6):1371-1380.
46 Zhao Halin,Zhao Xueyong,Zhang Tonghui,et al.Boundary Line on Agro-pasture Zigzag Zone in North China and Its Problems on Eco-Environment[J].Advances in Earth Science,2002,17(5):739-747.
46 赵哈林,赵学勇,张铜会,等.北方农牧交错带的地理界定及其生态问题[J].地球科学进展,2002,17(5):739-747.
47 Liu Z,Liu Y,Li Y.Anthropogenic Contributions Dominate Trends of Vegetation Cover Change over the Farming-pastoral Ecotone of Northern China[J].Ecological Indicators,2018,95:370-378.doi: 10.1016/j.ecolind.2018.07.063.
doi: 10.1016/j.ecolind.2018.07.063
48 Luo Chengping,Xue Jiyu.Ecologically Vulnerable Characteristics of The Farming-pastoral Zigzag Zone in Northern China[J].Journal of Arid Land Resources and Environment,1995,9(1):1-7.
48 罗承平, 薛纪瑜. 中国北方农牧交错带生态环境脆弱性及其成因分析[J].干旱区资源与环境,1995,9(1):1-7.
49 Tan Kai,Zhang Yongjun,Tong Xin,et al.Automatic Cloud Detection for Chinese High Resolution Remote Sensing Satellite Imagery[J].Acta Geodaetica et Cartographica Sinica,2016,45(5):581-591.
49 谭凯,张永军,童心,等.国产高分辨率遥感卫星影像自动云检测[J].测绘学报,2016,45(5):581-591.
50 Dong Zhipeng,Wang Mi,Li Deren,et al.A Cloud Detection Method for High Resolution Remote Sensing Imagery based on the Spectrum and Texture of Objects[J].Acta Geodaetica et Cartographica Sinica,2018,47(7):108-118.
50 董志鹏,王密,李德仁,等.利用对象光谱与纹理实现高分辨率遥感影像云检测方法[J].测绘学报,2018,47(7):108-118.
[1] 牟昱璇,邬明权,牛铮,黄文江,杨尽. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5): 1127-1135.
[2] 李萌,年雁云,边瑞,白艳萍,马金辉. 基于多源遥感影像的青海云杉和祁连圆柏分类[J]. 遥感技术与应用, 2020, 35(4): 855-863.
[3] 李宏达,高小红,汤敏. 基于CNN的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.
[4] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[5] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[6] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[7] 柴旭荣,李明,周义,王金风,田庆春. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
[8] 梁丽娟, 黄万里张容焱, 林广发, 彭俊超, 梁春阳. Sentinel-2卫星影像融合方法与质量评价分析[J]. 遥感技术与应用, 2019, 34(3): 612-621.
[9] 丁海宁. 黄土高原土壤铁元素含量遥感反演方法 [J]. 遥感技术与应用, 2019, 34(2): 275-283.
[10] 高书鹏, 史正涛, 刘晓龙, 柏延臣. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6): 1122-1131.
[11] 韩涛, 潘剑君, 张培育, 曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[12] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[13] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[14] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.