Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (1): 121-131    DOI: 10.11873/j.issn.1004-0323.2021.1.0121
蒸散发遥感专栏     
蒸散发遥感反演产品应用关键问题浅议
熊育久1,2(),冯房观1,方奕舟1,邱国玉3,赵少华4,姚云军5
1.中山大学土木工程学院,广东 广州 510275
2.广东省华南地区水安全调控工程技术研究中心,广东 广州 510275
3.北京大学深圳研究生院环境与能源学院,广东 深圳 518055
4.生态环境保护部卫星环境应用中心/国家环境保护卫星遥感重点实验室,北京 100094
5.北京师范大学地理科学学部,北京 100875
Critical Problems When Applying Remotely Sensed Evapotranspiration Products
Yujiu Xiong1,2(),Fangguan Feng1,Yizhou Fang1,Guoyu Qiu3,Shaohua Zhao4,Yunjun Yao5
1.School of Civil Engineering,Sun Yat-Sen University,Guangzhou 510275,China
2.Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China,Guangzhou 510275,China
3.Satellite Environment Center,Ministry of Ecology and Environment / State Environmental Protection Key Laboratory of Satellite Remote Sensing,Beijing 100094,China
4.Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
 全文: PDF(6710 KB)   HTML
摘要:

陆地蒸散发精确测算是地球系统和全球变化研究的薄弱环节与难点。遥感提供的蒸散发产品极大地推动了相关领域的研究,但蒸散发遥感产品种类多、反演理论涉及水文学与遥感科学,不仅影响初涉该领域的用户选择产品,且无视数据物理含义、简单拿来主义式的应用可能导致不合理的分析结果,影响科学问题深入研究。基于MODIS、GLEAM等6种长时间序列(1980~2018年)蒸散发遥感产品,以黄土高原蒸散发多年变化趋势为应用案例,从产品特征、反演算法与精度等角度,探讨在应用蒸散发遥感产品时需要注意的关键问题。结果表明:①各种蒸散发产品与观测值在年尺度上差异显著(方差分析/ANOVA,P<0.01)、相对误差在17%~30%之间(R2<0.4);②蒸散发多年平均值的空间分布整体趋势相似、但局部差异明显(同一区域可高达400 mm/y);③产品差异使得统计的黄土高原蒸散发变化趋势不一致,甚至出现相反的变化趋势。可见,应用蒸散发遥感产品前,需查明产品算法、输入数据特征、产品反演精度(如误差大小及来源),掌握产品的优点与局限性;有可供利用的观测数据时,务必深入检验产品在拟开展研究区域的精度,方能根据产品提供的数据展开客观分析。研究结果可为干旱、半干旱地区蒸散发产品选择与应用提供参考。

关键词: 蒸散发遥感反演全球产品黄土高原    
Abstract:

Accurate estimation of terrestrial evapotranspiration (ET) is challenged substantially in studies on the Earth system and global change. Remotely sensed ET products have greatly fostered researches on related areas. However, there are various ET products retrieved based on different theories involving hydrology and quantitative Remote Sensing (RS). These theories are probably too esoteric to understand for students and young scientists (new users) alike. As such, ignoring the physical meaning of the products may hinder their proper application, lead to unreasonable analysis and affect an in-depth study of scientific problems. Therefore, we compared and analyzed six RS-based ET products, including MODIS and GLEAM (1980~2018), over the Loess Plateau, northwest China, aiming to discuss critical problems when applying these products. The results show that: ① there is a low correlation between RS-based ET and water balance ET (R2<0.4) because significant differences exist at yearly scale (ANOVA, P<0.01), with mean absolute percent errors ranging from 17% to 30%; ②spatially, although ET values show a similar distribution in general, substantial difference exists at certain regions, with a value up to 400 mm/y; ③when analyzing change trends of ET over the Loess Plateau based on these ET products, inconsistent trend or even opposite change trends will be observed. It concluded that before applying RS products, one should perform validations and master their advantages and limitations before application, including algorithm, model input and possible error propagation. This study can provide guidelines for selecting proper ET products for related researches in arid and semi-arid regions.

Key words: Evapotranspiration    Quantitative remote sensing    Global ET product    Loess Plateau
收稿日期: 2020-02-23 出版日期: 2021-04-13
ZTFLH:  P237  
基金资助: 国家自然科学基金面上项目“黄土高原蒸散发组分时空格局及其对植被恢复的响应研究”(42071395);“干旱区绿洲与荒漠植被蒸散发及其组分定量遥感反演研究”(41671416)
作者简介: 熊育久(1982-),男,贵州麻江人,博士,副教授,主要从事蒸散发遥感反演方面的研究。E?mail: xiongyuj@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊育久
冯房观
方奕舟
邱国玉
赵少华
姚云军

引用本文:

熊育久,冯房观,方奕舟,邱国玉,赵少华,姚云军. 蒸散发遥感反演产品应用关键问题浅议[J]. 遥感技术与应用, 2021, 36(1): 121-131.

Yujiu Xiong,Fangguan Feng,Yizhou Fang,Guoyu Qiu,Shaohua Zhao,Yunjun Yao. Critical Problems When Applying Remotely Sensed Evapotranspiration Products. Remote Sensing Technology and Application, 2021, 36(1): 121-131.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.1.0121        http://www.rsta.ac.cn/CN/Y2021/V36/I1/121

典型遥感 产品空间 分辨率时间 分辨率覆盖范围参考文献
空间时间
BESS

0.01°、

0.5°

8 d、

逐月

全球2000~2015[23-24]
GLASS0.05°逐日全球2002~2015[12,25-26]
GLEAM0.25°逐日全球1980~2018[27-28]
MOD160.01°8 d全球2000~2017[29]
MTE

0.5°、

0.08°

逐月全球1982~2016[830]
PLSH0.08°、1°逐月全球1982~2013[31-32]
PML0.05°8 d全球2002~2017[33]
SSEBop0.01°逐月全球2003~2018[34]
表1  典型的全球蒸散发遥感产品
图1  研究区域地理位置
蒸散发 遥感产品反演方法空间 分辨率时间 分辨率数据长度数据格式 与版本来源
MTE机器学习0.5°逐月1980~2016nc、第8版https:∥www.bgc-jena.mpg.de/geodb/projects/Data.php
MOD16P-M公式0.01°逐年2000~2014Geotif、第5版http:∥files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A3.105_MERRAGMAO/Geotiff/
PLSHP-M公式0.08°逐月1982~2013nc、第2版http:∥files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/
GLEAMP-T公式0.25°逐年1980~2018nc、第3.3a版https:∥www.GLEAM.eu/
ET_CR蒸散发互补方法0.1°逐月1982~2015nc、第1.5版http:∥data.tpdc.ac.cn/zh-hans/data/b6d9f525-5b76-48b0-82db-bb2963465cac
SSEBop能量平衡法0.01°逐年2003~2018Geotif、第4版https:∥edcintl.cr.usgs.gov/downloads/sciweb1/shared∥fews/web/global/yearly/eta/downloads/
表2  6种用于论文研究的典型蒸散发遥感产品及其特征
序号名称面积 /km2多年平均(1961~2009年)降水量(P)、潜在蒸发量(E0
P/mm·a-1E0/mm·a-1
1皇甫川流域3 2304061 026
2窟野河流域8 6214021 075
3孤山川流域1 2604101 047
4秃尾河流域3 3074111 093
5佳芦河流域1 1384371 093
6无定河流域24 6823731 133
7大理河流域3 8614841 110
8清涧河流域3 6004991 084
9延河流域5 8575071 072
10北洛河流域25 7235021 049
11泾河流域43 1065271 000
12渭河流域30 1225021 015
13汾河流域38 7285151 004
14昕水河流域4 1865021 009
表3  黄土高原14个子流域基本信息[46]
图2  西北地区典型蒸散发遥感产品空间分布特征(2003~2013多年平均值)
图3  基于水量平衡的蒸散发遥感产品验证(注:验证时间段为2003-2009年,样本量n=63;(g)图中星号表示与水量平衡测算的蒸散发相比差异显著(方差分析,P<0.01))
图4  基于不同蒸散发遥感产品的黄土高原蒸散发变化趋势
1 Wang K C, Dickinson R E. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability [J]. Reviews of Geophysics, 2012, 50: RG2005. doi:10.1029/2011RG000373.
doi: 10.1029/2011RG000373
2 Zhang K, Kimball J S, Running S W. A Review of Remote Sensing based Actual Evapotranspiration Estimation [J]. Wiley Interdisciplinary Reviews: Water, 2016, 3:834-853.
3 Yang Dawen, Xu Zongxue, Li Zhe, et al. Progress and Prospect of Hydrological Sciences [J]. Progress in Geography, 2018, 37(1): 36-45.
3 杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45.
4 Chen Fahu, Fu Bojie, Xia Jun, et al. Major Advances in Studies of The Physical Geography and Living Environment of China during the Past 70 Years and Future Prospects [J]. Science China Earth Sciences,2019,49(11):1659-1696.
4 陈发虎, 傅伯杰, 夏军,等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学: 地球科学, 2019,49(11): 1659-1696.
5 Wang Jingfeng, Liu Yuanbo, Zhang Ke. The Maximum Entropy Production Approach for Estimating Evapotranspiration: Principle and Applications [J]. Advances in Earth Science, 2019, 34(6): 596-605.
5 Wang Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
6 Jackson R D, Reginato R J, Idso S B. Wheat Canopy Temperature: A Practical Tool for Evaluating Water Requirements [J]. Water Resource Research, 1997, 13: 651-656.
7 Wang K, Wang P, Li Z Q, et al. A Simple Method to Estimate Actual Evapotranspiration from a Combination of Net Radiation, Vegetation Index, and Temperature [J]. Journal of Geophysical Research: Atmospheres, 2007, 112 (D15): D15107.
8 Jung M, Koirala S, Weber U, et al. The FLUXCOM Ensemble of Global Land-Atmosphere Energy Fluxes [J]. Scientific Data, 2019, 6: 74. doi: 10.1038/s41597-019-0076-8.
doi: 10.1038/s41597-019-0076-8
9 Xu T R, Guo Z X, Liu S M, et al. Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8674-8690.
10 Monteith J L. Evaporation and Environment [J]. Symposia of the Society for Experimental Biology, 1965, 19: 205-234.
11 Priestley C H B, Taylor R J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters [J]. Monthly Weather Review, 1972, 100: 81-92.
12 Yao Y J, Liang S L, Li X L, et al. A Satellite-based Hybrid Algorithm to Determine the Priestley-taylor Parameter for Global Terrestrial Latent Heat Flux Estimation across Multiple Biomes [J]. Remote Sensing of Environment, 2015, 165: 216-233.
13 Brutsaert W. A Generalized Complementary Principle with Physical Constraints for Land-Surface Evaporation [J]. Water Resources Research, 2015, 51 (10): 8087-8093.
14 Ma N, Szilagyi J, Zhang Y, et al. Complementary-relationship-based Modeling of Terrestrial Evapotranspiration across China during 1982~2012: Validations and Spatiotemporal Analyses [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(8): 4326-4351.
15 Bastiaanssen W G M, Menenti M, Feddes R A, et al. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) 1. Formulation [J]. Journal of Hydrology, 1998, 212-213: 198-212.
16 Su Z. the Surface Energy Balance System (SEBS) for Estimation of The Turbulent Heat Fluxes [J]. Hydrology and Earth Sciences, 2002, 6(1): 85-99.
17 Carlson T. An Overview of The Triangle Method for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery [J]. Sensors, 2007, 7(8): 1612-1629.
18 Crow W T, Kustas W P. Utility of Assimilating Surface Radiometric Temperature Observations for Evaporative Fraction and Heat Transfer Coefficient Retrieval [J]. Boundary-Layer Meteorology, 2005, 115 (1): 105-130.
19 Bateni S M, Entekhabi D, Castelli F. Mapping Evaporation and Estimation of Surface Control of Evaporation Using Remotely Sensed Land Surface Temperature from a Constellation of Satellites [J]. Water Resources Research, 2013, 49(2): 950-968.
20 Xu T R, Bateni S M, Liang S, et al. Estimation of Surface Turbulent Heat Fluxes via Variational Assimilation of Sequences of Land Surface Temperatures from Geostationary Operational Environmental Satellites [J]. Journal of Geophysical Research: Atmosphere, 2014, 119(18): 10780-10798.
21 Xu T R, X L, He S, et al. Mapping Regional Turbulent Heat Fluxes via Variational Assimilation of Land Surface Temperature Data from Polar Orbiting Satellites [J]. Remote Sensing of Environment, 2019, 221: 444-461.
22 Yao Yunjun, Cheng Jie, Zhao Shaohua, et al. Estimation of Farmland Evapotranspiration: A Review of Methods Using Thermal Infrared Remote Sensing Data [J]. Advances in Earth Science, 2012, 27(12): 1308-1318.
22 姚云军, 程洁, 赵少华, 等. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012, 27(12): 1308-1318.
23 Jiang C, Ryu Y. Multi-scale Evaluation of Global Gross Primary Productivity and Evapotranspiration Products derived from Breathing Earth System Simulator (BESS) [J]. Remote Sensing of Environment, 2016, 186: 528-547.
24 Ryu Y, Baldocchi D D, Kobayashi H, et al. Integration of MODIS Land and Atmosphere Products With A Coupled-Process Model To Estimate Gross Primary Productivity and Evapotranspiration from 1 km to Global Scales [J]. Global Biogeochemical Cycles, 2011, 25: GB4017. doi:10.1029/2011GB004053.
doi: 10.1029/2011GB004053
25 Yao Y J, Liang S L, Cheng J, et al. MODIS-driven Estimation of Terrestrial Latent Heat Flux in China based on a Modified Priestley-taylor Algorithm [J]. Agricultural and forest Meteorology, 2013, 171-172: 187-202.
26 Yao Y J, Liang S L, Li X L, et al. Bayesian Multi-model Estimation of Global Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological, and Satellite Observations[J]. Journal of Geophysical Research-atmospheres, 2014, 119: 4521-4545.
27 Miralles D, Holmes T R H, Gash J H, et al. Global Land-Surface Evaporation Estimated from Satellite-based Observations [J]. Hydrology and Earth System Sciences, 2011, 15(2): 453-469.
28 Martens B, Miralles D, Lievens H, et al. GLEAM v3: Satellite-based Land Evaporation and Root-zone Soil Moisture [J]. Geoscientific Model Development, 2017, 10: 1903-1925.
29 Mu Q, Zhao M, Running S W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm[J]. Remote Sensing of Environment, 2011, 115: 1781-1800.
30 Tramontana G, Jung M, Ichii K, et al. Predicting Carbon Dioxide and Energy Fluxes across Global Fluxnet Sites with Regression Algorithms[J].Biogeosciences,2016,13:4291-4313.
31 Zhang K, Kimball J S, Nemani R R, et al. A Continuous Satellite-derived Global Record of Land Surface Evapotranspiration from 1983~2006[J]. Water Resources Research,2010, 46(9):W09522. doi:10.1029/2009WR008800,2010.
doi: 10.1029/2009WR008800
32 Zhang K, Kimball J, Nemani R, et al. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration[J].Scientific Reports,2015,5:15956. doi:10.1038/srep15956.
doi: 10.1038/srep15956
33 Zhang Y Q, Kong D D, Rong G, et al. Coupled Estimation of 500 m and 8-Day Resolution Global Evapotranspiration and Gross Primary Production in 2002~2017[J]. Remote Sensing of Environment, 2019, 222: 165-182.
34 Senay G B, Bohms S, Singh R, et al. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach[J]. Journal of American Water Resources Research, 2013, 49: 577-591.
35 Khan M S, Liaqat U W, Baik J, et al. Stand-alone Uncertainty Characterization of Gleam, GLDAS and Mod16 Evapotranspiration Products Using an Extended Triple Collocation Approach[J]. Agricultural and Forest Meteorology, 2018, 252: 256-268.
36 Xu T R, Guo Z X, Xia Y L, et al. Evaluation of Twelve Evapotranspiration Products from Machine Learning, Remote Sensing and Land Surface Models over Conterminous United States[J]. Journal of Hydrology, 2019, 578: 124105.
37 Jung M, Reichstein M, Ciais P, et al. A Recent Slowdown in Global Land Evapotranspiration due To Limited Moisture Supply [J]. Nature, 2010, 467: 951-954.
38 Forzieri G, Alkama R, Miralles D G, et al. Satellites Reveal Contrasting Responses of Regional Climate To The Widespread Greening of Earth [J]. Science, 2017, 356(6343): 1180-1184.
39 Pan Ning, Wang Shuai, Liu Yanxu, et al. Advances in Soil Moisture Retrieval from Remote Sensing [J]. Acta Ecologica Sinica, 2019, 39(13): 4615-4626.
39 潘宁, 王帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13): 4615-4626.
40 Wu Xiaodan, Xiao Qing, Wen Jianguang, et al. Advances in Uncertainty Analysis for the Validation of Remote Sensing Products: Take Leaf Area Index for Example [J]. Journal of Remote Sensing, 2014, 18(5): 1011-1023.
40 吴小丹, 肖青, 闻建光, 等. 遥感数据产品真实性检验不确定性分析研究进展[J]. 遥感学报, 2014, 18(5): 1011-1023.
41 Yi Yonghong, Yang Dawen, Liu Yu, et al. Review of Study On Regional Evapotranspiration Modeling based on Remote Sensing [J]. Journal of Hydraulic Engineering, 2008, 39 (9): 1118-1124.
41 易永红, 杨大文, 刘钰, 等. 区域蒸散发遥感模型研究的进展[J]. 水利学报, 2008, 39 (9): 1118-1124.
42 Wang Guohua, Zhao Wenzhi. Advances in the Application of Remote Sensing to Evapotranspiration Research in Arid Regions [J]. Advances in Earth Science, 2011, 26(8): 848-858.
42 王国华, 赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26 (8): 848-858.
43 Li Xin, Liu Qiang, Liu Qinhuo, et al. The Progresses on the Watershed Allied Telemetry Experimental Research (WATER): Remote Sensing of Key Hydrological and Ecological Parameters [J]. Remote Sensing Technology and Application, 2012, 27(5): 650-662.
43 李新, 刘强, 柳钦火, 等. 黑河综合遥感联合试验研究进展:水文与生态参量遥感反演与估算[J]. 遥感技术与应用, 2012, 27(5): 650-662.
44 Mu Q, Heinsch F A, Zhao M, et al. Development of a Global Evapotranspiration Algorithm based on MODIS and Global Meteorology Data [J]. Remote Sensing of Environment, 2007, 111(4): 519-536.
45 Senay G B, Budde M, Verdin J P. Enhancing the Simplified Surface Energy Balance (SSEB) Approach for Estimating Landscape ET: Validation with the METRIC Model[J]. Agricultural Water Management, 2011, 98(4): 606-618.
46 Liang W, Bai D, Wang F, et al. Quantifying the Impacts of Climate Change and Ecological Restoration on Streamflow Changes based on A Budyko Hydrological Model in China's Loess Plateau [J]. Water Resources Research, 2015, 51(8): 6500-6519.
47 Mo X, Wu J J, Wang Q, et al. Variations in Water Storage In China over Recent Decades from Grace Observations and GLDAS [J]. Natural Hazards and Earth System Sciences, 2016, 16: 469-482.
48 Wang S, Fu B J, Piao S L, et al. Reduced Sediment Transport in the Yellow River due To Anthropogenic Changes [J]. Nature Geoscience, 2016, 9: 38-41.
49 Xu G C, Zhang J X, Li P, et al. Vegetation Restoration Projects and Their Influence on Runoff and Sediment in China [J]. Ecological Indicators, 2018, 95(1): 233-241.
50 Chen C, Park T J, Wang X H, et al. China and India Lead in Greening of the World Through Land-use Management [J]. Nature Sustainability, 2019, 2: 122-129.
51 Zhang Hanyu, Fang Lufang, Shi Zhihua, et al. Spatio-temporal Patterns for the NDVI and Its Responses to Climatic Factors in the Loess Plateau, China [J]. Acta Ecologica Sinica, 2016,36(13): 3960-3968.
51 张含玉, 方怒放, 史志华, 等. 黄土高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2016,36(13): 3960-3968.
52 Zhao Anzhou, Zhang Anbin, Liu Hhaixin, et al. Spatiotemporal Variation of Vegetation Coverage before and after Implementation of Grain for Green Project in the Loess Plateau [J]. Journal of Natural Resources, 2017, 104(A): 449-460.
52 赵安周, 张安兵, 刘海新, 等. 退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析[J]. 自然资源学报, 2017, 104(A): 449-460.
53 Wang Yashu, Li Xiaoyan, Shi Fangzhong, et al. The Grain for Green Project Intensifies Evapotranspiration in the Revegetation Area of the Loess Plateau in China [J]. Chinese Science Bulletin , 2019, 64(21): 588-599.
53 王雅舒, 李小雁, 石芳忠, 等. 退耕还林还草工程加剧黄土高原退耕区蒸散发[J]. 科学通报, 2019, 64(21): 588-599.
54 Zhou Zhipeng, Sun Wenyi, Mu Xingmin, et al. Temporal and Spatial Pattern of Actual Evapotranspiration in the Loess Plateau from 2001 to 2017[J].Yellow River,2019,41(6):76-80.
54 周志鹏, 孙文义, 穆兴民, 等. 2001~2017年黄土高原实际蒸散发的时空格局[J]. 人民黄河, 2019, 41(6): 76-80.
55 Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in Validation of Remotely Sensed Land Surface Evapotranspiration [J]. Journal of Remote Sensing, 2020, 24(8): 975-999.
55 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999.
56 Xiong Y J, Qiu G Y, Zhao S H, et al. An Evapotranspiration Product for Arid Regions based on the Three-temperature Model and Thermal Remote Sensing [J]. Journal of Hydrology, 2015, 530: 392-404.
57 Shen Y, Chen Y. Global Perspective on Hydrology, Water Balance, and Water Resources Management in Arid Basins [J]. Hydrological Processes, 2010, 24: 129-135.
58 Qiu G Y, Li C, Yan C H. Characteristics of Soil Evaporation, Plant Transpiration and Water Budget of Nitraria Dune in the Arid Northwest China [J]. Agricultural and forest Meteorology, 2015, 203: 107-117.
59 Feng X M, Sun G, Fu B J, et al. Regional Effects of Vegetation Restoration on Water Yield across the Loess Plateau, China [J]. Hydrology and Earth System Sciences, 2012, 9(3): 2617-2628.
60 Wei Hejie, Zhang Yangfang, Zhu Ni, et al. Spatial and Temporal Characteristic of ET in the Weihe River Basin based on MOD16 Data[J]. Journal of Desert Research, 2015, 35 (2): 414-422.
60 位贺杰, 张艳芳, 朱妮, 等. 基于MOD16数据的渭河流域地表实际蒸散发时空特征[J]. 中国沙漠,2015,35 (2):414-422.
61 Wang Y Q, Xiong Y J, Qiu GY, et al. Is Scale Really A Challenge in Evapotranspiration Estimation? A Multi-scale Study in the Heihe Oasis Using Thermal Remote Sensing and The Three-temperature Model[J]. Agricultural and forest Meteorology, 2016, 230-231: 128-141.
62 Xiong Y J, Zhao W L, Wang P, et al. Simple and Applicable Method for Estimating Evapotranspiration and Its Components in Arid Regions[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(17-18): 9963-9982.
[1] 李佳,辛晓洲,彭志晴,李小军. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用, 2021, 36(1): 103-120.
[2] 郭利彪,刘桂香,运向军,张勇,孙世贤. 基于数据机理的植被叶面积指数遥感反演研究[J]. 遥感技术与应用, 2020, 35(5): 1047-1056.
[3] 边玲玲,王卷乐,郭兵,程凯,魏海硕. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J]. 遥感技术与应用, 2020, 35(1): 211-218.
[4] 徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.
[5] 卢静, 贾立, 郑超磊, 胡光成. 遥感水分收支对区域水资源估算潜能[J]. 遥感技术与应用, 2019, 34(3): 630-638.
[6] 丁海宁. 黄土高原土壤铁元素含量遥感反演方法 [J]. 遥感技术与应用, 2019, 34(2): 275-283.
[7] 胡鹏飞, 李净, 张彦丽. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186.
[8] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[9] 吴仪,邓孺孺,秦雁,梁业恒,熊龙海. 新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J]. 遥感技术与应用, 2017, 32(5): 825-834.
[10] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[11] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[12] 杨永民,李璐,庞治国,路京选. 基于理论参数空间的遥感蒸散模型构建及验证[J]. 遥感技术与应用, 2016, 31(2): 324-331.
[13] 陈瑜丽,沈芳. 长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析[J]. 遥感技术与应用, 2016, 31(1): 126-133.
[14] 李文娟,赵传燕,别强,高婵婵,高云飞. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015, 30(5): 917-924.
[15] 李琴,陈曦,包安明,徐征和,赵强. 基于SEBS模型干旱区蒸散发量研究[J]. 遥感技术与应用, 2014, 29(2): 195-201.