Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 581-586    DOI: 10.11873/j.issn.1004-0323.2021.3.0581
数据与图像处理     
基于有源定标器的HY-2B卫星雷达高度计时钟频率偏差在轨测试
崔洪彬1,2(),郭伟1(),王彩云1,王特1
1.中国科学院国家空间科学中心 中国科学院微波遥感技术重点实验室,北京 100190
2.中国科学院大学,北京 100049
In-Orbit Test of Clock Frequency Deviation of HY-2B Satellite Radar Altimeter based on Transponder
Hongbin Cui1,2(),Wei Guo1(),Caiyun Wang1,Te Wang1
1.National Space Science Center,Chinese Academy of Sciences Key Laboratory of Microwave Remote Sensing,Chinese Academy of Sciences,Beijing 100190,China
2.University of Chinese Academy of Sciences,Beijing 100149,China
 全文: PDF(995 KB)   HTML
摘要:

雷达高度计的主要功能是测量全球平均海平面高度(SSH:Sea Surface Height),它通过准确测量收发脉冲之间的时间间隔来实现精准的星地距离测量,时间测量的准确度取决于高度计时钟的准确性。卫星在轨运行期间,雷达高度计时钟频率会产生缓慢漂移,时钟频率漂移会影响星地距离的测量准确度,造成对海面高程的测量偏差。在基于重建型有源定标器对HY-2A卫星高度计时钟偏差在轨测试方法的基础上,提出了从星地斜距函数曲线时间偏移量中提取高度计时钟偏差的估计方法,应用于HY-2B卫星雷达高度计在轨定标测试中,测量了雷达高度计时钟频率漂移量,精度优于0.001 Hz。结果表明:HY-2B高度计原子钟性能稳定,时钟频率偏差造成的测距偏差为毫米量级,平均测距漂移率为2.95×10-7 m/d。

关键词: HY?2B卫星雷达高度计有源定标器时钟频率偏差估计    
Abstract:

The main function of radar altimeter is to measure the global average Sea Surface Height (SSH). It can accurately measure the satellite ground distance by measuring the time interval between sending and receiving pulses. The accuracy of time measurement depends on the accuracy of altimeter clock. During the operation of satellite in-orbit, the frequency of radar altitude clock will drift slowly, which will affect the accuracy of satellite ground distance measurement and result in the measurement deviation of sea surface elevation. Based on the in-orbit test method of altimeter clock deviation of HY-2A satellite based on reconstruction transponder, this paper proposes an estimation method of altimeter clock deviation extracted from the time offset of satellite ground offset function curve, which is applied to the in-orbit calibration test of HY-2B satellite radar altimeter. The frequency drift of radar altimeter is measured, and the accuracy is better than 0.001 Hz. The results show that the performance of the atomic clock of HY-2B altimeter is stable, the range error caused by clock frequency deviation is millimeter magnitude, and the average range drift rate is 2.95×10-7 m/d.

Key words: HY-2B Satellite    Radar altimeter    Transponder    Clock frequency deviation estimation
收稿日期: 2020-02-21 出版日期: 2021-07-22
ZTFLH:  TP722.6  
基金资助: 吉林省科技厅重点支持项目(20180201048SF)
通讯作者: 郭伟     E-mail: 1224155321@qq.com;guowei@mirslab.cn
作者简介: 崔洪彬(1993-),男,吉林长春人,硕士研究生,主要从事高度计定标研究。E?mail: 1224155321@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔洪彬
郭伟
王彩云
王特

引用本文:

崔洪彬,郭伟,王彩云,王特. 基于有源定标器的HY-2B卫星雷达高度计时钟频率偏差在轨测试[J]. 遥感技术与应用, 2021, 36(3): 581-586.

Hongbin Cui,Wei Guo,Caiyun Wang,Te Wang. In-Orbit Test of Clock Frequency Deviation of HY-2B Satellite Radar Altimeter based on Transponder. Remote Sensing Technology and Application, 2021, 36(3): 581-586.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0581        http://www.rsta.ac.cn/CN/Y2021/V36/I3/581

图1  HY-2B高度计信号结构图
图2  有源定标器与卫星的几何关系图[10](H为有源定标器相对地球参考椭球面的高度;Re为地球半径;R为高度计与有源定标器的相对距离;R0为高度计到天底点高度;d为有源定标器到卫星天底点的地表距离;θ为距离d对应的地心张角;v为卫星沿轨道的速度;h为有源定标器相对高度在卫星至天底点连线上的投影)
图3  卫星收发关系示意图
图4  修正钟差前后有源定标器反演单程距离抛物线顶点对比
KuC
日期

频率偏差

/Hz

距离偏差

/cm

频率偏差

/Hz

距离偏差

/cm

2019-04-23-0.08850.2321-0.09050.2374
2019-04-27-0.08990.2358-0.09050.2374
2019-04-29-0.08930.2342-0.09020.2367
2019-05-21-0.09020.2367-0.09020.2366
2019-07-02-0.09050.2375-0.09050.2374
2019-09-10-0.09030.2369-0.09010.2362
2019-09-24-0.09020.2365-0.09010.2363
2019-10-22-0.09010.2362-0.09030.2369
2019-11-05-0.09070.2380-0.09030.2369
表1  HY-2B高度计时钟偏差测量结果
图5  HY-2B高度计原子钟频率准确度测量结果
1 Raynal M. HY-2A: Global Statistical Assessment and Cross-calibration with Jason-2 over Ocean[R]. FRANCE: Collecte Localisation Satellites (CLS), 2014.
2 Anzenhofer M, Gruber T. Fully Reprocessed ERS-1 Altimeter Data from 1992 to 1995: Feasibility of the Detection of Long Term Sea Level Change[J]. Journal of Geophysical Research Atmospheres, 1998, 103(C4):8089–8112.doi:10.1029/97JC02566.
doi: 10.1029/97JC02566
3 Lillibridge J, Smith W, Scharroo R, et al. The Geosat Geodetic Mission Twentieth Anniversary Edition Data Product [C]∥ AGU Fall Meeting Abstracts. USA: American Geophysical Union, 2004,1:786.
4 Scharroo R, Faugère Y, Roca M, et al. Envisat RA-2 USO Anomaly: Impact and Correction[C]∥ 2007 Envisat Symposium, Eur. Space Agency Spec. Publ.ESA SP-636.2007.
5 Jayles C, Nhun-Fat B, Tourain C. DORIS: System Description and Control of the Signal Integrity[J]. Journal of Geodesy,2006,80(8-11):457-472.doi:10.1007/s00190-006-0046-8.
doi: 10.1007/s00190-006-0046-8
6 Wan J Z, Guo W, Zhao F, et al. HY-2A Radar Altimeter Ultrastable Oscillator Drift Estimation Using Reconstructive Transponder with Its Validation by Multimission Cross Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(9):5229-5236. doi:10.1109/TGRS.2015. 2419670.
doi: 10.1109/TGRS.2015. 2419670
7 Gong Xunwu, Guo Wei, Wan Junzhi.Study on the Approach for Backscattering Coefficient In-orbit Calibration of HY-2 Altimeter Using A Reconstructive Transponder[J].Remote Sensing Technology and Application,2017,32(2):374-379.
7 龚循武,郭伟,万珺之.基于有源定标器的 HY-2高度计后向散射系数在轨定标方法研究[J]. 遥感技术与应用,2017,32(2):374-379.
8 Wang C Y, Guo W, Zhao F, et al. Development of the Reconstructive Transponder for In-Orbit Calibration of HY-2A Altimeter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9(6):2709-2719. doi:10.1109/JSTARS.2016.2544759.
doi: 10.1109/JSTARS.2016.2544759
9 Gong Xiaoyan.Development of Digital Control Unit of the Transponder for HY-2 Altimeter[D].Beijing: University of Chinese Academy of Sciences,2012.
9 宫小艳.HY-2高度计有源定标器数控单元研制[D].北京:中国科学院大学,2012.
10 Mathews M B. Design, Testing, and Performance Analysis of Transponders for Use with Satellite Altimeters.[D]. Boulder, the USA: University of Colorado, 1995.
11 Wan Junzhi. Research on the Absolute Calibration of the Ocean 2 Altimeter System based on Transponder[D].Beijing: University of Chinese Academy of Sciences,2015.万珺之.基于有源定标器的海洋二号高度计系统延迟在轨绝对定标研究[D].北京:中国科学院大学,2015.
12 Jia Xiaolin,Feng Laiping,Mao Yue,et al. Performance Evalution of GPS On-borad Clock[J]. Journal of Time and Frequency,2010,33(2):115-120.
12 贾小林,冯来平,毛悦,等.GPS星载原子钟性能评估[J].时间频率学报,2010,33(2):115-120.
[1] 张宇飞,蒋兴伟,马超飞. 基于现场观测的星载雷达高度计定标方法进展[J]. 遥感技术与应用, 2019, 34(6): 1190-1196.
[2] 杨双宝,翟振和,许可,王志森,史灵卫,王磊,崔海英,徐曦煜. 合成孔径雷达高度计数据处理方法[J]. 遥感技术与应用, 2017, 32(6): 1083-1092.
[3] 龚循武,郭伟,万珺之. 基于有源定标器的HY-2高度计后向散射系数在轨定标方法研究[J]. 遥感技术与应用, 2017, 32(2): 374-379.
[4] 徐永生,高乐,张云华. 美国新一代测高卫星SWOT—评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84-94.
[5] 张国首,苗洪利,王桂忠,郭迎婷,荆玉洁,张杰. 雷达高度计海况偏差估计不同纬度区间参数模型研究[J]. 遥感技术与应用, 2016, 31(6): 1054-1058.
[6] 谌华,郭伟,万珺之,赵飞,王彩云. 基于有源定标器的卫星雷达高度计近海测高基准重建方法研究[J]. 遥感技术与应用, 2016, 31(5): 912-918.
[7] 杜岳恒,徐曦煜. 星载雷达高度计有源定标器回波模型及性能仿真研究[J]. 遥感技术与应用, 2012, 27(2): 177-182.
[8] 高 阳,刘和光. 基于MATLAB/SIMULINK的海面回波模拟器仿真与分析[J]. 遥感技术与应用, 2007, 22(4): 565-569.
[9] 张 婷,许 可. 一种提高海洋雷达高度计重跟踪估值精度的处理方法[J]. 遥感技术与应用, 2007, 22(3): 422-427.
[10] 徐曦煜,刘和光,许 可. 基于海洋二号高度计内定标方案的工程设计和误差分析[J]. 遥感技术与应用, 2007, 22(2): 141-146.
[11] 刘保有,许 可. 雷达高度计误指向角的估计与补偿[J]. 遥感技术与应用, 2007, 22(1): 101-104.
[12] 郭 伟,张晓辉. 回波模拟器在雷达高度计地面测试和定标中的应用[J]. 遥感技术与应用, 2005, 20(1): 178-181.
[13] 许 可,刘和光,姜景山. 神舟4号雷达高度计在轨工作模式及实时数据处理[J]. 遥感技术与应用, 2005, 20(1): 162-165.
[14] 许 可, 董晓龙, 张德海, 刘和光, 姜景山. HY-2 雷达高度计和微波散射计[J]. 遥感技术与应用, 2005, 20(1): 89-93.
[15] 徐曦煜,刘和光,许 可. 星载雷达高度计幅度和相位误差分析与估算[J]. 遥感技术与应用, 2004, 19(6): 498-503.