Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (5): 983-996    DOI: 10.11873/j.issn.1004-0323.2021.5.0983
土壤水分专栏     
青藏高原L波段微波辐射观测与土壤水分反演研究进展
杨奥莉1,2(),郑东海2(),文军1,陆宣承1,杨越1,符晴2,3
1.成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,四川 成都 610000
2.中国科学院青藏高原研究所,青藏高原地球系统科学国家重点实验室国家青藏高原 科学数据中心,北京 100101
3.兰州大学大气科学学院,甘肃 兰州 730000
Progress on L-band Microwave Radiometry Observation and Soil Moisture Retrieval over the Tibetan Plateau
Aoli Yang1,2(),Donghai Zheng2(),Jun Wen1,Xuancheng Lu1,Yue Yang1,Qing Fu2,3
1.School of Atmospheric Sciences,Chengdu University of Information Technology,Plateau Atmosphere and Environment Key Laboratory of Sichuan province,Chengdu 610000,China
2.National Tibetan Plateau Data Center,State Key Laboratory of Tibetan Plateau Earth System Science,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
3.College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China
 全文: PDF(3423 KB)   HTML
摘要:

土壤水分是地气间水热交换的重要变量,影响着地表感热潜热划分、水分收支和植被蒸腾等过程,青藏高原土壤水分的研究对于改进高原水分循环和能量平衡的模拟研究具有重要意义。随着SMOS、SMAP等卫星的发射,L波段被动微波遥感技术成为大尺度监测土壤水分的主要手段。分别从L波段星—机—地观测与微波辐射模拟、区域尺度土壤水分观测、卫星产品评估与土壤水分反演算法发展等方面系统回顾和总结了近年来L波段被动微波遥感及其土壤水分反演算法、产品在青藏高原的主要应用与研究进展。在此基础上,归纳了当前高原L波段被动微波辐射模拟与土壤水分反演存在的问题,主要包括缺乏高原尺度的微波辐射模拟评估和改进的卫星土壤水分产品、土壤冻结时期的水分监测产品依然缺失等问题。针对存在的问题,进一步提出了相关建议与展望,建议今后的研究应加强高原尺度的微波辐射模拟评估与土壤水分产品改进工作,并积极拓展土壤水分产品在高原水分循环和能量平衡模拟、植被生长与干旱监测的应用研究。

关键词: L波段被动微波遥感土壤水分反演微波辐射观测与模拟冻土青藏高原    
Abstract:

Soil moisture is a key variable in quantifying water and heat exchanges between land surface and atmosphere, which also affects the partitioning of surface sensible and latent heat fluxes, and estimations of water budget and vegetation transpiration. Study of soil moisture on the Tibetan Plateau is of great significance to improve the simulation of water and energy budgets on the plateau. After the launch of SMOS and SMAP satellites, L-band passive microwave remote sensing has become the main way of monitoring soil moisture at large scale. This paper reviews and summarizes recent progresses on the L-band microwave radiometry observation and soil moisture retrieval over the Tibetan Plateau, including measurements and simulations of brightness temperature based on ground-, aircraft-based and spaceborne platforms, development of regional-scale soil moisture monitoring networks, evaluation of satellite products and development of soil moisture retrieval algorithms. Based on the reviews, we summarize the main problems exist currently on simulating the L-band microwave emission and retrieving soil moisture on the plateau, such as lack of evaluating microwave emission simulation and improving satellite-based soil moisture retrievals at plateau scale, and absence of soil moisture products for frozen soil conditions. In view of above existing problems, this paper further suggests that future work should pay more attention to improve the L-band microwave emission simulation and soil moisture retrievals at the plateau scale, and to enlarge the applications of soil moisture products, such as to improve the understanding of plateau-scale water and energy budgets, vegetation growth and drought monitoring.

Key words: L-band Passive Microwave Remote Sensing    Soil moisture retrieval    Microwave radiometry observation and simulation    Frozen soil    Tibetan Plateau
收稿日期: 2020-06-21 出版日期: 2021-12-08
ZTFLH:  TP79  
基金资助: 国家自然科学基金面上项目(41971308);成都信息工程大学(KTVZ201821)
通讯作者: 郑东海     E-mail: 2287622439@qq.com;zhengd@itpcas.ac.cn
作者简介: 杨奥莉(1996-),女,四川资阳人,硕士研究生,主要从事微波遥感的研究。E?mail:2287622439@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨奥莉
郑东海
文军
陆宣承
杨越
符晴

引用本文:

杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.

Aoli Yang,Donghai Zheng,Jun Wen,Xuancheng Lu,Yue Yang,Qing Fu. Progress on L-band Microwave Radiometry Observation and Soil Moisture Retrieval over the Tibetan Plateau. Remote Sensing Technology and Application, 2021, 36(5): 983-996.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.0983        http://www.rsta.ac.cn/CN/Y2021/V36/I5/983

图1  玛曲土壤水分观测网站点位置与分布以及ELBARA-III微波辐射计观测场概况(由Zheng等[23,29]修改)
卫星任务国家/机构发射时间设备类型观测角度重访周期/d空间分辨率/km
SMOS欧洲ESA2009.11L波段微波辐射计0~55°1-335~50
Aquarius美国NASA2011.06L波段微波辐射计与散射计28.7°/37.8°/45.6°776×94/84×120/96×156
SMAP美国NASA2015.01L波段微波辐射计与合成孔径雷达40°2-340
表1  SMOS、Aquarius和SMAP卫星主要信息
图2  2016年8月至2017年7月SMOS、SMAP和ELBARA-III在早晨6 am(a,b)和晚上6 pm(c,d)过境时刻的水平TBH(a,c)和垂直TBV(b,d)极化观测亮温的比较
图3  青藏高原及其附近地区SMOS升轨和降轨时刻亮温均方根误差分布图
参数化方案SMOS(L2 L3)Aquarius(L2)SMAP(L2)
粗糙地表反射率

h-Q-N模型

稀疏植被: h=0.1, 森林: h=0.3

Q=0; NV=0, NH=2

h-Q-N模型

h=0.1

Q=0; N=2

h-Q-N模型

h=f(IGBP)

Q=0; N=2

土壤介电常数

L2 V5.5之后Mironov 模型[39]

εG= f(SM, TG, % clay)

Wang&Schmugge模型[38]

εG = f(SM, TG, % clay)

Mironov模型[39]

εG = f(SM, TG, % clay)

土壤有效温度

TG=f(Tsoil_surf, Tsoil_deep)

CT=(SM / W0)b0

TG=f(Tsoil_surf, Tsoil_deep)

CT=0.246

TG=f(Tsoil_surf, Tsoil_deep)

CT=0.246

植被温度ECMWF表层土壤温度TC=TGTC=TG
植被单次散射反照率稀疏植被: ω=0,森林: ω=0.06~0.08ω=0.05ω=f(IGBP)
植被光学厚度τp=b′·LAI + b″

τp=b·VWC, b=0.8

VWC=f(NDVI, IGBP)

τp=b·VWC, b=f(IGBP)

VWC=f(NDVI, IGBP)

表2  SMOS、Aquarius和SMAP卫星任务运行算法的主要组成
图4  青藏高原土壤水分观测网点分布
土壤水分观测网

安装时间

/年

站点数量

/个

气候类型地表覆盖类型地理位置

时间分辨率

/min

观测深度

/cm

参考文献
黑河上游201340干旱高山草甸,森林黑河流域上游54、10、20Kang,等,2015[47]
玛曲200820湿润高山草甸高原东北边缘155、10、20、40、80Su,等,2011[6]
那曲201056半干旱高山草甸高原中部305、10、20、40Yang,等,2013[7]
帕里201525半干旱稀疏草地高原南部305、10、20、40Chen,等,2017[25]
阿里201020干旱荒漠高原西部155、10、20、40、60Su,等,2011[6]
表3  青藏高原土壤水分观测网基本信息

卫星

任务

土壤水

分产品

空间分辨率

/km

土壤水分

观测网

评估指标参考文献
RBias/m3m-3RMSE/m3m-3
SMOSL2_SM25玛曲0.72-0.09Su,等,2011[6]
L2_SM15那曲0.41a/0.41d-0.02a/0.00d-Zhao,等,2014[49]
L3_SM250.26a/0.17d-0.06a/0.03d-
L3_SM25玛曲0.24a/0.20d-0.03a/0.25d0.14a/0.37dZeng,等,2015[50]
那曲0.54a/0.43d-0.07a/0.00d0.10a/0.14d
L3_SM25那曲0.67a/0.73d-0.02a/-0.01d0.07a/0.06dChen,等,2017[25]
帕里0.31a/0.37d-0.02a/-0.04d0.09a/0.08d
SMOS-IC25黑河0.18a/0.30d-0.04a/-0.12d0.12a/0.14dLiu,等,2019[51]
那曲0.43a/0.47d-0.13a/-0.05d0.18a/0.14d
帕里0.60a/0.52d-0.06a/-0.03d0.07a/0.09d
玛曲0.49a/0.64d-0.01a/-0.07d0.08a/0.11d
阿里0.12a/0.10d-0.02a/0.00d0.09a/0.12d
AquariusL3_SM那曲0.77-0.070.08Li,等,2015[53]
SMAPL3_SM_P36那曲0.87d-0.03d0.06dChen,等,2017[25]
帕里0.67d-0.03d0.04d
L3_SM_P36黑河0.64a/0.78d-0.11a/-0.10d0.11a/0.11dLiu,等,2019[51]
那曲0.84a/0.82d-0.00a/-0.02d0.08a/0.07d
帕里0.67a/0.62d-0.03a/-0.05d0.05a/0.06d
玛曲0.72a/0.81d-0.07a/-0.07d0.09a/0.08d
阿里0.57a/0.34d-0.04a/-0.05d0.05a/0.05d
L3_SM_P_E9那曲0.880.000.06Li,等,2018[54]
玛曲0.650.110.13
L3_SM_P36那曲0.880.000.06
玛曲0.640.120.13
L2_SM_A3黑河0.21~0.78-0.12~0.090.03~0.17Ma,等,2017[55]
L2_SM_P360.55~0.78-0.00~0.090.03~0.09
L2_SM_AP90.39~0.81-0.20~0.030.04~0.81
表4  SMOS、Aquarius和SMAP卫星任务土壤水分产品在青藏高原的评估总结
图5  2016年8月至2017年7月SMAP土壤水分产品与Zheng等[29]反演结果在降轨和升轨时刻的对比
1 Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004,305(5687):1138-1140. DOI:10.1126/science.1100217.
doi: 10.1126/science.1100217
2 Brocca L, Tarpanelli A, Filippucci P, et al. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:752–766. DOI:10.1016/j.jag.2018.08.023.
doi: 10.1016/j.jag.2018.08.023
3 Wu G, Duan A, Liu Y, et al. Tibetan plateau climate dynamics: recent research progress and outlook[J]. National Science Review:English version, 2015, 000(001):100-116. DOI:10.1093/nsr/nwu045.
doi: 10.1093/nsr/nwu045
4 Zheng D, Rogier V D V, Su Z, et al. Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan Rivers[J]. Journal of Hydrology,2018,563:382-394. DOI:10.1016/j.jhydrol.2018.06.024.
doi: 10.1016/j.jhydrol.2018.06.024
5 Zheng D, Rogier V D V, Su Z, et al. Evaluation of Noah frozen soil parameterization for application to a Tibetan Meadow ecosystem[J]. Journal of Hydrometeorology, 2017, 18(6):1749-1763. DOI:10.1175/JHM-D-16-0199.1.
doi: 10.1175/JHM-D-16-0199.1
6 Su Z, Wen J,Dente L,et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature(Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences,2011,15(7):2303-2316. DOI:10.5194/hess-15-2303-2011.
doi: 10.5194/hess-15-2303-2011
7 Yang K, Qin J, Zhao L, et al. A multiscale soil moisture and freeze-thaw monitoring network on the third pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12):1907-1916. DOI:10.1175/BAMS-D-12-00203.1.
doi: 10.1175/BAMS-D-12-00203.1
8 Babaeian E, Sadeghi M, Jones S B, et al. Ground, proximal and satellite remote sensing of soil moisture[J]. Reviews of Geophysics,2019,57(2):530-616. DOI:10.1029/2018RG 000618.
doi: 10.1029/2018RG 000618
9 Wigneron J P, Jackson T J, O”Neill P, et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment,2017,192:238-262. DOI:10.1016/j.rse.2017.01.024.
doi: 10.1016/j.rse.2017.01.024
10 Kerr Y H, Waldteufel P, Wigneron J P, et al. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 39(8):1729-1735. DOI:10.1109/36.942551.
doi: 10.1109/36.942551
11 Lagerloef G, Colomb F R, Le Vine D, et al.The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge[J]. Oceanography, 2008, 21(1):68-81. DOI:10.5670/oceanog.2008.68.
doi: 10.5670/oceanog.2008.68
12 Entekhabi D, Njoku E G, O"Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE,2010,98(5):704-716. DOI:10.1109/JPROC.2010. 2043918.
doi: 10.1109/JPROC.2010. 2043918
13 Shi J, Dong X, Zhao T, et al. WCOM: The science scenario and objectives of a global water cycle observation mission[J]. IEEE International Geoscience and Remote Sensing Symposium,2014:3646-3649. DOI:10.1109/IGARSS.2014.6947273.
doi: 10.1109/IGARSS.2014.6947273
14 Schwank M, Wigneron J, Lopea-Baeza E, et al. L-band radiative properties of vine vegetation at the MELBEX III SMOS Cal/Val Site[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1587-1601. DOI:10.1109/TGRS.2012.2184126.
doi: 10.1109/TGRS.2012.2184126
15 Montzka C, Bogena H R, Weihermueller L, et al. Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the rur and erft catchments, Germany[J]. IEEE Transaction on Geoscience and Remote Sensing, 2013, 51(3):1728–1743. DOI:10.1109/TGRS.2012.2206031.
doi: 10.1109/TGRS.2012.2206031
16 Panciera R, Walker J P, Jackson T J, et al. The Soil Moisture Active Passive Experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):490-507. DOI:10.1109/TGRS.2013.2241774.
doi: 10.1109/TGRS.2013.2241774
17 Colliander A, Cosh M H, Misra S, et al. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15)[J]. Remote Sensing of Environment,2017,196:101-112. DOI:10.1016/j.rse.2017. 04.022.
doi: 10.1016/j.rse.2017. 04.022
18 Li Xin, Liu Shaoming, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.
18 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5):481-498.:10.1007/s11783-011-0280-z.
19 Zhao T, Shi J, Lv L, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment, 2020, 240:111680. DOI:10.1016/j.rse.2020.111680.
doi: 10.1016/j.rse.2020.111680
20 Colliander A, Jackson T J, Bindlish R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191:215-231. DOI:10.1016/j.rse.2017.01.021.
doi: 10.1016/j.rse.2017.01.021
21 Zhao T, Shi J, Bindlish R, et al. Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(2):589-603. DOI:10.1109/IGARSS.2013. 6721089.
doi: 10.1109/IGARSS.2013. 6721089
22 Zheng D, Wang X, Rogier V D V, et al. L-band microwave emission of soil freezesc-thaw process in the third pole environment[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5324-5338. DOI:10.1109/TGRS.2017. 2705248.
doi: 10.1109/TGRS.2017. 2705248
23 Zheng D, Li X, Wang X, et al. Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau[J]. Remote Sensing of Environment, 2019, 226:16-25. DOI:10.1016/j.rse.2019.03.029.
doi: 10.1016/j.rse.2019.03.029
24 Dente L, Su Z, Wen J. Validation of SMOS soil moisture products over the Maqu and Twente Regions[J]. Sensors, 2012, 12(12):9965-9986. DOI:10.3390/s120809965.
doi: 10.3390/s120809965
25 Chen Y, Yang K, Qin J, et al. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2017, 122(11):5780-5792. DOI:10.1002/2016JD026388.
doi: 10.1002/2016JD026388
26 Zheng D, Wang X, Rogier V D V, et al. Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment[J]. Remote Sensing of Environment,2018, 209(March):633-647. DOI:10.1016/j.rse.2018.03.011.
doi: 10.1016/j.rse.2018.03.011
27 Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8):1145-1160. DOI:10.1175/BAMS-D-12-00154.1.
doi: 10.1175/BAMS-D-12-00154.1
28 Li X, Liu S, Xiao Q, et al. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system[J]. Scientific Data, 2017, 4:170083. DOI:10.1038/sdata.2017.83.
doi: 10.1038/sdata.2017.83
29 Zheng D, Wang X, Rogier V D V, et al. Assessment of soil moisture SMAP retrievals and ELBARA-III measurements in a Tibetan meadow ecosystem[J]. IEEE Geoscience and Remote Sensing Letter, 2019, 16(9):1407-1411. DOI:10.1109/LGRS.2019.2897786.
doi: 10.1109/LGRS.2019.2897786
30 Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403. DOI:10.1109/TGRS.2012.2184548.
doi: 10.1109/TGRS.2012.2184548
31 Bindlish R, Jackson T, Cosh M, et al. Global soil moisture from the Aquarius/SAC-D satellite: description and initial assessment[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):923-927. DOI:10.1109/LGRS.2014.2364151.
doi: 10.1109/LGRS.2014.2364151
32 O'Neill P, Chan S, Njoku E, et al. Algorithm Theoretical Basis Document (ATBD): level2&3 soil moisture(Passive) data products[EB/OL]. 2015,
32 Initial Release v.3,October1,Available at .
33 Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans, 1982, 87:11229-11237. DOI:10.1029/JC087iC13p11229.
doi: 10.1029/JC087iC13p11229
34 Jackson T J, Schmugge T. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36:203-212. DOI:10.1016/0034-4257(91)90057-D.
doi: 10.1016/0034-4257(91)90057-D
35 Wang J R, Choudhury B J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans, 1981, 86(C6):5277-5282. DOI:10.1029/JC086iC06p05277.
doi: 10.1029/JC086iC06p05277
36 Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1697–1707. DOI:10.1109/36.942548.
doi: 10.1109/36.942548
37 Dobson M C, Ulaby F T, Hallikainen M, et al. Microwave dielectric behavior of wet soil-part II: dielectric-mixing models[J]. IEEE Transactions and Geoscience and Remote Sensing, 1985, 23(1):35-46. DOI:10.1109/TGRS.1985.289498.
doi: 10.1109/TGRS.1985.289498
38 Wang J R, Schmugge T. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, 18(4):288-295. DOI:10.1109/TGRS.1980.350304.
doi: 10.1109/TGRS.1980.350304
39 Mironov V L, Kosolapova L G, Fomin S V. Physically and mineralogically based spectroscopic dielectric model for moist soils[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2059-2070. DOI:10.1109/TGRS.2008. 2011631.
doi: 10.1109/TGRS.2008. 2011631
40 Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research: Oceans, 1982, 87(C2):1301-1304. DOI:10.1029/JC087iC02p01301.
doi: 10.1029/JC087iC02p01301
41 Zheng D, Rogier V D V, Wen J, et al. Assessment of the SMAP soil emission model and soil moisture retrieval algorithms for a Tibetan desert ecosystem[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3786-3799. DOI:10.1109/TGRS.2018.2811318.
doi: 10.1109/TGRS.2018.2811318
42 Wigneron J P, Chanzy A, Kerr Y H, et al. Evaluating an improved parameterization of the soil emission in L-MEB[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1177-1189. DOI:10.1109/TGRS.2010. 2075935.
doi: 10.1109/TGRS.2010. 2075935
43 Zheng D, Li X, Zhao T, et al. Impact of soil permittivity and temperature profile on L-band microwave emission of frozen soil[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4080-4093. DOI:10.1109/TGRS.2020. 3024971.
doi: 10.1109/TGRS.2020. 3024971
44 Wang Q, Rogier V D V, Su Z. Use of a discrete electromagnetic model for simulating aquarius L-band Active/Passive observations and soil moisture retrieval[J]. Remote Sensing of Environment,2017,205:434-452. DOI:10.1016/j.rse.2017. 10.044.
doi: 10.1016/j.rse.2017. 10.044
45 Bai X, Zeng J, Chen K, et al. Parameter optimization of a discrete scattering model by integration of global sensitivity analysis using SMAP active and passive observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):1084-1099. DOI:10.1109/TGRS.2018.2864689.
doi: 10.1109/TGRS.2018.2864689
46 Schwank M, Stahli M, Wydler H, et al. Microwave L-band emission of freezing soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6):1252-1261. DOI:10.1109/TGRS.2004.825592.
doi: 10.1109/TGRS.2004.825592
47 Kang Jian, Jin Rui, Li Xin, et al. HiWATER:Waternet observation dataset in the upper reaches of the Heihe River Basin in 2014[DB/OL]. Heihe Plan Science Data Center, 2015.亢健, 晋锐,李新, 等. 黑河生态水文遥感试验:黑河流域上游生态水文无线传感器网络WATERNET 2014年观测数据集[DB/OL]. 黑河计划数据管理中心, 2015.
48 Dente L, Vekerdy Z, Wen J, et al. Maqu network for validation of satellite-derived soil moisture products[J]. International Journal of Applied Earth Observation & Geoinformation, 2012, 17:55-65. DOI:10.1016/j.jag.2011.11.004.
doi: 10.1016/j.jag.2011.11.004
49 Zhao L, Yang K, Qin J, et al. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central tibetan plateau[J]. Remote Sensing of Environment, 2014, 152:345-355. DOI:10.1016/j.rse.2014.07.005.
doi: 10.1016/j.rse.2014.07.005
50 Zeng J, Li Z, Chen Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of Environment, 2015, 163:91-110. DOI:10.1016/j.rse.2015.03.008.
doi: 10.1016/j.rse.2015.03.008
51 Liu J, Chai L, Lu Z, et al. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet Plateau and its surrounding areas[J]. Remote Sensing, 2019, 11(7). DOI:10.3390/rs11070792.
doi: 10.3390/rs11070792
52 Liu J, Chai L, Dong J, et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method[J]. Remote Sensing of Environment, 2021, 255(1):112225. DOI:10.1016/j.rse.2020.112225.
doi: 10.1016/j.rse.2020.112225
53 Li D, Zhao T, Shi J, et al. First evaluation of aquarius soil moisture products using in situ observations and GLDAS model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(12):5511-5525. DOI:10.1109/JSTARS.2015.2452955.
doi: 10.1109/JSTARS.2015.2452955
54 Li C, Lu H, Yang K, et al. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau[J]. Remote Sensing, 2018, 10(4):1-16. DOI:10.3390/rs10040535.
doi: 10.3390/rs10040535
55 Ma C, Li X, Wei L, et al. Multi-scale validation of SMAP soil moisture products over cold and arid regions in north-western China using distributed ground observation data[J]. Remote Sensing,2017,9(4):327. DOI:10.3390/rs904 0327.
doi: 10.3390/rs904 0327
56 Owe M, Jeu R D, Walker J P. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1643-1654. DOI:10.1109/36.942542.
doi: 10.1109/36.942542
57 Chen Jiali, Zheng Donghai, Pang Guojin, et al. Retrieval of soil unfrozen water in Maqu region of Tibetan Plateau based on SMAP brightness temperature measurement[J]. Remote Sensing Technology and Application,2020,35(1):48-57.
57 陈家利, 郑东海, 庞国锦, 等. 基于SMAP 亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1):48-57.
58 Wang Q, Rogier V D V, Ferrazzoli P, et al. Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations[J]. International Journal Applied Earth Observation Geoinformation, 2019, 77:108-118. DOI:10.1016/j.jag.2019.01.005.
doi: 10.1016/j.jag.2019.01.005
[1] 盛夏,石玉立,丁海勇. 青藏高原GPM降水数据空间降尺度研究[J]. 遥感技术与应用, 2021, 36(3): 571-580.
[2] 詹鹏飞,刘凯,张玉超,马荣华,宋春桥. 青藏高原不同气候子区典型湖泊多时间尺度变化的遥感对比研究[J]. 遥感技术与应用, 2021, 36(1): 90-102.
[3] 雷华锦,李弘毅,王建,郝晓华,赵宏宇,张娟. 基于环境信息和回归模型的青藏高原MODIS积雪面积比例产品制备[J]. 遥感技术与应用, 2020, 35(6): 1303-1311.
[4] 王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4): 882-892.
[5] 焦雪敏,张赫林,徐富宝,王岩,彭代亮,李存军,徐希燕,范海生,黄运新. 青藏高原1982~2015年FPAR时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 950-961.
[6] 张永宏,杨晨阳,陶润喆,王剑庚,田伟. 基于FY-4A数据的青藏高原多时相云检测方法[J]. 遥感技术与应用, 2020, 35(2): 389-398.
[7] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[8] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[9] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[10] 张博, 吴立宗. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究[J]. 遥感技术与应用, 2018, 33(6): 1178-1185.
[11] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[12] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[13] 胡文星,柴琳娜,赵少杰,赵天杰. 寒区复杂地表冻融状态判别式算法改进[J]. 遥感技术与应用, 2017, 32(3): 395-405.
[14] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[15] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.