Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (2): 389-398    DOI: 10.11873/j.issn.1004-0323.2022.2.0389
LUCC专栏     
典型资源型城市的植被覆盖变化及驱动力分析
赵传武1,2(),郭伟1(),阎跃观1,戴华阳1,张建1
1.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
2.北京师范大学地理科学学部 遥感科学与工程研究院,北京 100875
Analysis of Vegetation Cover Change and Driving Forces in Typical Resource
Chuanwu Zhao1,2(),Wei Guo1(),Yueguan Yan1,Huayang Dai1,Jian Zhang1
College of Geoscience and Surveying Engineering,China University of Mining and Technology,Beijing,Beijing 100083,ChinaInstitute of Remote Sensing Science and Engineering,Faculty of Geographical Sciences,Beijing Normal University,Beijing 100875,China
 全文: PDF(5144 KB)   HTML
摘要:

干旱半干旱区植被变化研究较多,然而很少关注资源型城市社会经济对植被变化影响。基于2000~2020年鄂尔多斯市MOD13Q1数据、降雨和温度等气候数据、原煤产量等11个社会经济指标,结合GIS技术和线性回归法等统计学方法,对植被覆盖时空变化及其影响因素进行了研究。结果表明:①21年间鄂尔多斯的NDVI值介于0.233~0.395,呈波动性增长趋势,增长速率为0.059/10 a;下辖的8个区县的NDVI值也呈波动性增长趋势,但各地区存在差异。②鄂尔多斯植被呈东北高,西南低的分布特征,低植被区面积5.35万km2,占整个鄂尔多斯面积的61.58%,高植被区面积仅0.20万km2;植被改善区面积远远大于植被退化区面积,改善区占整个鄂尔多斯面积的52.19%,植被退化区仅占3.69%。③NDVI值与降雨量表现为极显著性正相关,相关系数为0.794(P<0.01);NDVI变化与当月累计降雨量的相关系数较大,与1个月前温度的相关系数较大。④NDVI变化与11种社会经济指标均表现为极显著正相关,相关性为0.728~0.796(P<0.01)。鄂尔多斯植被恢复效果较好,降雨量和温度是影响植被生长的主要因素,NDVI变化对降雨量的响应无明显滞后性,对温度的响应存在一个月的滞后期,社会经济发展对植被覆盖的积极作用大于消极影响。

关键词: 植被覆盖影响因素鄂尔多斯市    
Abstract:

There are many researches on vegetation change in arid and semi-arid areas, but little attention has been paid on the social and economic impact of resource-based cities on vegetation change. Based on MOD13Q1 data, climate data such as rainfall and temperature, 11 socio-economic indicators such as raw coal production from 2000 to 2020, combined with GIS technology and statistical methods such as linear regression, the spatial and temporal changes of Ordos vegetation and its influencing factors were studied. The results are as follows: ①The NDVI value of Ordos ranged from 0.233 to 0.395, showing a fluctuating growth trend with a growth rate of 0.059/10 a during 2000 to 2020; the NDVI values of the eight counties under its jurisdiction also showed a fluctuating growth trend, but there were many differences among different regions. ②The vegetation in Ordos is high in the northeast and it is low in the southwest. The area of low vegetation area is 53 500 km2, accounting for 61.58% of the total area of Ordos. The area of high vegetation is only 20 000 km2. The area of the vegetation improvement is much larger than that of the vegetation degradation area. The improvement area accounts for 52.19% of the entire Ordos area, and the vegetation degradation area only accounts for 3.69%. ③The NDVI value is extremely significant positively related to rainfall, with a correlation coefficient of 0.794 (P<0.01); the correlation coefficient between the change of NDVI and the accumulated rainfall in the month is larger, and the correlation coefficient with the temperature one month ago is larger. ④The NDVI change is extremely significantly positively correlated with the 11 socioeconomic indicators, with a correlation of 0.728~0.796 (P<0.01). From 2000 to 2020, the restoration effect of Ordos vegetation is good. Rainfall and temperature are the main factors affecting the growth of vegetation in Ordos, of which rainfall dominates. The response of NDVI changes to rainfall has less obvious lag, and the response to temperature has a one-month lag. The positive effects of socio-economic development on vegetation cover outweigh the negative effects.

Key words: Vegetation cover    Influencing factors    Ordos
收稿日期: 2020-12-17 出版日期: 2022-06-17
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(51404272);城市空间信息工程北京市重点实验室经费资助项目(2020206)
通讯作者: 郭伟     E-mail: cumtb_zhao@163.com;guowei_rs@163.com
作者简介: 赵传武(1995-),男,河南信阳人,硕士研究生,主要从事环境遥感研究。E?mail:cumtb_zhao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵传武
郭伟
阎跃观
戴华阳
张建

引用本文:

赵传武,郭伟,阎跃观,戴华阳,张建. 典型资源型城市的植被覆盖变化及驱动力分析[J]. 遥感技术与应用, 2022, 37(2): 389-398.

Chuanwu Zhao,Wei Guo,Yueguan Yan,Huayang Dai,Jian Zhang. Analysis of Vegetation Cover Change and Driving Forces in Typical Resource. Remote Sensing Technology and Application, 2022, 37(2): 389-398.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.2.0389        http://www.rsta.ac.cn/CN/Y2022/V37/I2/389

图1  鄂尔多斯地理位置及气象站点分布示意图
图2  2000~2020年鄂尔多斯植被覆盖时间变化趋势
图3  2000~2020年鄂尔多斯8个区植被覆盖时间变化趋势
图4  2000~2020年鄂尔多斯NDVI的空间分布(研究区总面积为8.69万km2)
图5  2000~2020年鄂尔多斯植被覆盖等级
图6  2000~2020年鄂尔多斯植被覆盖空间变化趋势
图7  2000~2020年鄂尔多斯植被覆盖变化趋势
图8  NDVI与气候因子的响应关系(①降雨量、日照时数为研究区年累计量;②NDVI、湿度和温度为研究区年平均值)
图9  2000~2020年鄂尔多斯的分布(①降雨量为月累计降雨量)
NDVI与降雨量NDVI与温度
年份0~1月0~2月0~3月0个月1个月2个月0~1月0~2月0~3月0个月1个月2个月
20020.945**0.983**0.886**0.79**0.907**0.665*0.916**0.905**0.774*0.858**0.910**0.635*
20030.919**0.823**0.6160.908**0.761**0.3660.886**0.839**0.671*0.816**0.893**0.595
20040.951**0.829**0.5840.943**0.727*0.240.892**0.874**0.815**0.799**0.866**0.665*
20050.972**0.896**0.726*0.882**0.812**0.3840.895**0.888**0.757*0.870**0.874**0.637*
20060.978**0.915**0.741*0.888**0.786**0.3850.881**0.844**0.817*0.782**0.855**0.691*
20070.966**0.906**0.722*0.854**0.825**0.4410.918**0.901**0.774*0.859**0.887**0.627
20120.974**0.875**0.6260.923**0.823**0.3870.889**0.884**0.783*0.844**0.867**0.642*
20130.984**0.923**0.719*0.893**0.891**0.4280.900**0.891**0.761*0.851**0.869**0.619
20140.881**0.702*0.3840.950**0.671*0.1430.904**0.903**0.777*0.852**0.875**0.615
20150.702*0.354-0.1490.611*0.191-0.1360.948**0.904**0.706*0.912**0.899**0.576
20170.910**0.790*0.5170.907**0.719*0.2380.932**0.911**0.781*0.883**0.897**0.609
表1  月度尺度下NDVI与水热因子的相关关系
图10  鄂尔多斯市NDVI与社会经济的相关性(由于2020年的社会经济数据未公布,本研究仅考虑2000~2019年)
1 Sun Hongyu, Wang Changyao, Niu Zheng, et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J]. Journal of Remote Sensing, 1998, 2(3):204-210.
1 孙红雨,王长耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J].遥感学报,1998,2(3):204-210.
2 Zhao Hongyan, Chen Ying, Zhou Yi, et al. Spatiotemporal variation of NDVI in vegetation growing season and its responses to climatic factors in mid and eastern Gansu Province from 2008 to 2016[J]. Arid Land Geography, 2019, 42(6):1427-1435.
2 赵鸿雁,陈英,周翼,等.甘肃中东部植被生长季NDVI时空变化及其对气候因子的响应[J].干旱区地理,2019,42(6):1427-1435.
3 Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003,421(6918): 37-42. DOI:10.1038/nature01286 .
doi: 10.1038/nature01286
4 Luo Xinrui, Yang Wunian, Chen Tao. Dynamic monitoring of vegetation and its driving force analysis using remoting sensing in hilly area of Central Sichuan Province[J]. Resources and Environment in the Yangtze Basin, 2019, 28(1):103-111.
4 罗新蕊,杨武年,陈桃.川中丘陵区植被遥感动态监测及其驱动力分析[J].长江流域资源与环境,2019,28(1):103-111.
5 Emir Nikati, Shabiti Mansur, Bhatti Yusuf. Spatiotemporal variation of vegetation NDVI and its relationship with climatic factors on the Northern slope of the Tianshan Mountains[J]. Arid Zone Research, 2019, 36(5):1250-1260.
5 尼加提·伊米尔,满苏尔·沙比提,玉苏甫·买买提.天山北坡植被NDVI时空变化及其与气候因子的关系[J].干旱区研究,2019,36(5):1250-1260.
6 Zhang J, Niu J M, Bao T L, et al. Human induced dryland degradation in Ordos Plateau, China, revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series[J]. Journal of Arid Land, 2014, 6(2):219-229. DOI:10.1007/s40333-013-0203-x
doi: 10.1007/s40333-013-0203-x
7 Xiu L N, Yan C Z, Li X S, et al. Monitoring the response of vegetation dynamics to ecological engineering in the Mu Us Sandy Land of China from 1982 to 2014[J]. Environmental Monitoring and Assessment,2018,190(9):543. DOI:10.1007/ s10661-018-6931-9
doi: 10.1007/ s10661-018-6931-9
8 Zheng Hailiang, Fang Shifeng, Liu Chengcheng, et al. Dynamics of monthly vegetation activity and its responses to climate change in the Qinghai-Tibet Plateau[J]. Journal of Geo-information Science, 2019, 21(2):201-214.
8 郑海亮,房世峰,刘成程,等.青藏高原月NDVI时空动态变化及其对气候变化的响应[J].地球信息科学学报,2019,21(2):201-214.
9 Zhang Jun, Yan Junping. Characteristics of NDVI changes under the different vegetation types in Shaanxi Province from 1982 to 2013[J]. Journal of Arid Land Resources and Environment, 2017, 31(4):78-92.
9 张君,延军平.1982~2013年陕西不同植被类型NDVI变化特征分析[J].干旱区资源与环境,2017,31(4):86-92.
10 Wang Juan, Li Baolin, Yu Wanli. Analysis of vegetation trend and their causes during recent 30 years in Inner Mongolia Autonomous Region[J]. Journal of Arid Land Resources and Environment, 2012, 26(2):125-138.
10 王娟,李宝林,余万里.近30年内蒙古自治区植被变化趋势及影响因素分析[J].干旱区资源与环境,2012,26(2):132-138.
11 Yao Xueru, Liu Huamin, Pei Hao, et al. Variation of vegetation and its driving factors in Erdos Plateau from 1982 to 2006[J]. Bulletin of Soil and Water Conservation, 2012, 32(3):220-233.
11 姚雪茹,刘华民,裴浩,等.鄂尔多斯高原1982-2006年植被变化及其驱动因子[J].水土保持通报,2012,32(3):225-230.
12 Hu Junde, Lu Baisui, Chula Sa, et al. Vegetation dynamics and its responses to drought in Ordos Plateau[J]. Science of Surveying and Mapping, 2018, 43(4):45-58.
12 胡君德,李百岁,萨楚拉,等.2000~2012年鄂尔多斯高原植被动态及干旱响应[J].测绘科学,2018,43(4):49-58.
13 ERDUN Grile, Bao Gang, Bao Yulong, et al. Vegetation coverage changes in west Ordos National Natural Reserves during the period from 2001 to 2013[J]. Research of Soil and Water Conservation,2016,23(1):110-119.
13 额尔敦格日乐,包刚,包玉龙,等.2001~2013年西鄂尔多斯国家级自然保护区植被覆盖变化[J].水土保持研究,2016,23(1):110-116,2.
14 Yue Y J, Li M, Zhu A X, et al. Land degradation monitoring in the Ordos Plateau of China using an expert knowledge and BP-ANN-Based Approach[J]. Sustainability,2016,8(11):1174-1194. DOI:10.3390/su8111174 .
doi: 10.3390/su8111174
15 Ma Q M, Long Y P, Jia X P, et al. Vegetation response to climatic variation and human activities on the Ordos Plateau from 2000 to 2016[J]. Environmental Earth Sciences, 2019, 78(24):709-713. DOI:10.1007/s12665-019-8732-z .
doi: 10.1007/s12665-019-8732-z
16 Zeng X J, Liu Z F, He C Y, et al. Quantifying surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia[J]. Sustainability,2018,10(4):1135-1151. DOI:10.3390/su10041135 .
doi: 10.3390/su10041135
17 Li Xiaoguang, Liu Huamin, Wang Lixin, et al. Vegetation cover change and its relationship between climate and human activities in Ordos Plateau[J]. Chinese Journal of Agrometeorology, 2014, 35(4):470-485.
17 李晓光,刘华民,王立新,等.鄂尔多斯高原植被覆盖变化及其与气候和人类活动的关系[J].中国农业气象,2014,35(4):470-476.
18 Xiao Y, Wang R, Wang F, et al. Investigation on spatial and temporal variation of coupling coordination between socioeconomic and ecological environment: A case study of the Loess Plateau,China[J]. Ecological Indicators,2022, 136: 108667. DOI:10.1016/j.ecolind.2022.108667 .
doi: 10.1016/j.ecolind.2022.108667
19 Ma Q, He C Y, Fang X N. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions[J]. Landscape Ecology, 2018,33(12):2061-2070. DOI:10.1007/s10980-018-0726-9 .
doi: 10.1007/s10980-018-0726-9
20 Li Lili, Wang Dawei, Han Tao. Spatial-temporal dynamics of vegetation coverage and responding to climate change in Shiyang River Basin during 2000~2015[J]. Journal of Desert Research, 2018, 38(5):1108-1118.
20 李丽丽,王大为,韩涛.2000~2015年石羊河流域植被覆盖度及其对气候变化的响应[J].中国沙漠,2018,38(5):1108-1118.
21 ORDOS Statistics Bureau. Ordos statistical yearbook[M]. Beijing: China Statistics Press, 2000~2019.
21 鄂尔多斯统计局.鄂尔多斯统计年鉴[M].北京:中国统计出版社,2000-2019.
22 Yang G, Shen H F, Zhang L P, et al. Xinghua Li. A moving weighted harmonic analysis method for reconstructing high-quality spot vegetation NDVI time-series data[J].IEEE Tra-nsactions on Geoscience and Remote Sensing, 2015,53(11):6008-6021. DOI:10.1109/TGRS.2015.2431315 .
doi: 10.1109/TGRS.2015.2431315
23 Shen H F, Li X H, Cheng Q, et al. Missing information reconstruction of remote sensing data: A technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):61-85. DOI:10.1109/MGRS.2015.2441912 .
doi: 10.1109/MGRS.2015.2441912
24 Liu Minxia, Zhao Ruidong, Shao Peng, et al. Temporal and spatial variation of vegetation coverage and its driving forces in the Loess Plateau from 2001 to 2015[J]. Arid Land Geography, 2018, 41(1):99-108.
24 刘旻霞,赵瑞东,邵鹏,等.近15 a黄土高原植被覆盖时空变化及驱动力分析[J].干旱区地理,2018,41(1):99-108.
25 Guo W, Zhang Y H, Gao L. Using VIIRS-DNB and landsat data for impervious surface area mapping in an arid/semiarid region[J]. Remote Sensing Letters,2018,9(6):587-596. DOI:10.1080/2150704X.2018.1455234
doi: 10.1080/2150704X.2018.1455234
26 Li Jing, Cui Lvyuan, Yan Xiaoxiao, et al. Comparative analysis of long-term trends on fraction of vegetation coverage in grassland mining area[J]. Bulletin of Surveying and Mapping, 2019(8):130-134+157.
26 李晶,崔绿园,闫萧萧,等.草原矿区长时序植被覆盖度变化趋势对比分析[J].测绘通报,2019(8):130-134+157.
27 Zhang W, Wang L, Xiang F F, et al. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China[J]. Ecological Indicators,2020,110:105892. DOI:10.1016/j.ecolind. 2019.105892 .
doi: 10.1016/j.ecolind. 2019.105892
28 A D, Zhao W J, Qu X Y, et al. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 53: 103-117. DOI:10.1016/j.jag.2016.08.008 .
doi: 10.1016/j.jag.2016.08.008
29 Meng X Y, Gao X, Li S Y, et al. I Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982~2015[J]. Remote Sensing, 2020, 12(4), 603. DOI:10.3390/rs12040603 .
doi: 10.3390/rs12040603
30 Nie T, Dong G T, Jiang X H, et al. Spatio-temporal changes and driving forces of vegetation coverage on the Loess Plateau of Northern Shaanxi[J]. Remote Sensing, 2021, 13(4):613. DOI:10.3390/rs13040613 .
doi: 10.3390/rs13040613
[1] 赵美龄,郝利娜,许晓露,陈辰,许强. 土地利用/覆被变化对地质灾害发育的影响研究[J]. 遥感技术与应用, 2022, 37(2): 399-407.
[2] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[3] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[4] 尹翠景,封凯,王奇,刘磊. 遥感城市热岛提取的影响因素分析[J]. 遥感技术与应用, 2021, 36(3): 673-681.
[5] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[6] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[7] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[8] 黄桂平,曹艳萍. TRMM卫星3B43降水数据在黄河流域的精度分析[J]. 遥感技术与应用, 2019, 34(5): 1111-1120.
[9] 孙红, 田昕, 闫敏, 李增元, 陈尔学, 孙珊珊, 王崇阳. 内蒙古大兴安岭根河植被覆盖度动态变化及影响因素的分析[J]. 遥感技术与应用, 2018, 33(6): 1159-1169.
[10] 李哲, 宫兆宁, 刘先林, 关晖, 王颖. 基于面向对象多端元混解模型的植被覆盖度反演及其时空分布研究[J]. 遥感技术与应用, 2018, 33(6): 1149-1158.
[11] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[12] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[13] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[14] 郝建盛,张飞云,赵鑫,刘云霄,李兰海. 基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J]. 遥感技术与应用, 2017, 32(5): 883-892.
[15] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.