Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 1021-1028    DOI: 10.11873/j.issn.1004-0323.2022.4.1021
遥感应用     
基于SBAS-InSAR技术的煤矿开采沉陷监测与分析
张香凝1(),贺黎明1(),刘翠芝1,王兴杰1,唐永亮2,何蓉花1
1.东北大学资源与土木工程学院测绘工程系,辽宁 沈阳 110819
2.辽宁省地质环境监测总站,辽宁 沈阳 110000
Monitoring and Analysis of Coal Mining Subsidence based on SBAS-InSAR Method
Xiangning Zhang1(),Liming He1(),Cuizhi Liu1,Xingjie Wang1,Yongliang Tang2,Ronghua He1
1.School of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China
2.Liaoning Geo -environmental Monitoring Station,Shenyang 110000,China
 全文: PDF(6151 KB)   HTML
摘要:

地下煤炭资源大量开采导致的地表形变,引发严重的安全和环境隐患,雷达干涉测量技术是高精度、大范围地表形变监测的重要手段之一。以辽宁省沈阳市沈北新区蒲河煤矿为例,采用SBAS-InSAR技术探测2018—2019年矿区地表形变结果,获取了采煤引起地表形变的时空分布特征,结合采场所在区域的地质条件和变形诱发因素,利用数值模拟技术对观测形变结果进行模拟分析,进而讨论了蒲河煤矿地面沉降在时间和空间上的变形规律和机制。InSAR形变监测结果显示,开采区域内存在两处沉降漏斗,且数值模拟结果与InSAR形变观测值分布规律一致,反演结果接近实际情况,可为相关部门制定地面沉降防治措施提供科学依据。

关键词: 煤矿地面沉降SBAS-InSAROkada模型    
Abstract:

The surface deformation caused by large-scale mining of underground coal resources results in serious safety and environmental hazards. Radar interferometry technology is one of the important means of high-precision and large-scale surface deformation monitoring. This paper takes Puhe coal mine in Shenbei New District, Shenyang City, Liaoning Province as an example, SBAS-InSAR method is used to detect the surface deformation results in the mining area from 2018 to 2019, and the temporal and spatial distribution characteristics of surface deformation caused by coal mining are obtained. Combined with the geological conditions and deformation inducing factors of the mining area, numerical simulation technology is used to simulate and analyze the observed deformation results, and then the deformation law and mechanism of land subsidence in time and space of the Puhe coal mine is discussed. The InSAR deformation results show that there are two subsidence centers in the mining area, and the numerical simulation results are consistent with the observed InSAR deformation results, and the inversion results are close to the actual situation, which could provide scientific information for disaster prevention of land subsidence in the mining region.

Key words: Coal mine    Ground subsidence    SBAS-InSAR    Okada model
收稿日期: 2021-04-15 出版日期: 2022-09-28
:  TP722.6  
基金资助: 国家自然科学基金项目(41974028);中央高校基本科研业务专项资金(N2201013)
通讯作者: 贺黎明     E-mail: 332814679@qq.com;heliming@mail.neu.edu.cn
作者简介: 张香凝(1996-),女,辽宁沈阳人,硕士研究生,主要从事合成孔径雷达干涉测量方面的研究。E?mail: 332814679@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张香凝
贺黎明
刘翠芝
王兴杰
唐永亮
何蓉花

引用本文:

张香凝,贺黎明,刘翠芝,王兴杰,唐永亮,何蓉花. 基于SBAS-InSAR技术的煤矿开采沉陷监测与分析[J]. 遥感技术与应用, 2022, 37(4): 1021-1028.

Xiangning Zhang,Liming He,Cuizhi Liu,Xingjie Wang,Yongliang Tang,Ronghua He. Monitoring and Analysis of Coal Mining Subsidence based on SBAS-InSAR Method. Remote Sensing Technology and Application, 2022, 37(4): 1021-1028.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.1021        http://www.rsta.ac.cn/CN/Y2022/V37/I4/1021

图1  研究区域分布图
序号参数Sentinel-1
1轨道方向升轨
2入射角37.1°
3航向角-166.2°
4时间范围20180111—20190810
5影像数量42
表1  SAR卫星数据参数
图2  LOS向时间序列地表形变图(时间范围20180111—20190530)
图3  形变速率场、沿剖线各期沉降量以及沉降区内开裂的建筑物图
序号参数最佳拟合参数
组一组二组三
1X/m-15.99644.91303.95
Y/m-24.01-1080.1-939.95
2长度/m615.99646.42640.73
3宽度/m352.91229.36320.6
4深度/m482.09568.67481.29
5走向/°24.5211.01147.68
6张量/m-0.59-0.04-0.67
表2  蒲河煤矿Okada组合模型最佳拟合参数
图4  InSAR结果与模拟结果对比图
图5  剖线A1A2模拟和观测形变对比图
图6  残差分布直方图
1 Liu Xiaoling, Wei Aolin, Wang Yi, et al. Analyses of development characteristics and formation of geological disasters in coal mine area of northern Shaanxi[J].The Chinese Journal of Geological Hazard and Control,2016,27(4):70-73.
1 刘晓玲,魏奥林,王毅,等.浅析陕北煤矿矿区地质灾害发育特征及其成灾过程[J].中国地质灾害与防治学报,2016,27(4):70-73.
2 Liu Shanjun, Wu Lixin, Mao Yachun, et al. Spaceborne-airborne-ground collaborated intelligent monitoring on open-pit slope and its typical applications [J]. Journal of China Coal Society, 2020, 45(6): 2265-2276.
2 刘善军,吴立新,毛亚纯,等.天—空—地协同的露天矿边坡智能监测技术及典型应用[J].煤炭学报,2020,45(6):2265-2276.
3 Lanari R, Sansosti E, Fornaro G, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2375-2383. DOI: 10.1109/TGRS.2002.803792 .
doi: 10.1109/TGRS.2002.803792
4 Zhu Jianjun, Li Zhiwei, Hu Jun. Research progress and methods of InSAR for deformation monitoring[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1717-1733.
4 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.
5 Yin Hongjie, Zhu Jianjun, Li Zhiwei, et al. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58.
5 尹宏杰,朱建军,李志伟,等.基于SBAS的矿区形变监测研究[J].测绘学报,2011,40(1):52-58.
6 Zhao Weiying, Deng Kazhong, Yang Junkai, et al. Monitoring on influence of mining area deformation based on SBAS technology on buildings[J]. Saftey in Coal Mines, 2015,46(2):205-208.
6 赵伟颖,邓喀中,杨俊凯,等.基于SBAS技术的采动区形变对建筑物的影响监测[J].煤矿安全,2015,46(2):205-208.
7 Xiao Liang, He Yueguang, Xing Xuemin, et al. Time series subsidence analysis of drilling solution miningrock salt mines based on Sentinel-1 data and SBAS-InSAR technique[J]. Journal of Remote Sensing,2019,23(3): 501-513.
7 肖亮,贺跃光,邢学敏,等.Sentinel-1和SBAS-InSAR分析钻井水溶岩盐矿山时序沉降[J].遥感学报,2019,23(3):501-513.
8 Luan Yuanzhong, Liang Yaodong, Ji Zhaolei, et al. Monitoring and analysis of surface subsidence caused by SBAS-InSAR technology[J]. Coal Science and Technology, 2020, 48(10): 198-204.
8 栾元重,梁耀东,纪赵磊,等.基于SBAS-InSAR技术采动地表沉降监测与分析[J].煤炭科学技术,2020,48(10):198-204.
9 Okada Y. Surface deformation due to shear and tensile faults in a half space[J]. Bulletin of the Seismological Society of America,1992,82(2):1018-1040. DOI:10.1016/0148-9062(86)90674-1 .
doi: 10.1016/0148-9062(86)90674-1
10 Wu Qinwei, Zhu Yufeng, Zang Deyan. Inversion of coal mine subsidence mechanism based on simple dislocation model combined with monte carlo method[J]. Metal Mine, 2012(11):99-101,144.
10 吴勤伟,朱煜峰,臧德彦.简化位错模型结合蒙特卡罗法反演煤矿塌陷机理[J].金属矿山,2012(11):99-101,144.
11 Ren Wenjing, Jia Hongguo, Yan Bin. Mornitoring and parameter inversion on ground subsidence in mining area based on SBAS-InSAR method[J]. Bulletin of Surveying and Mapping,2021(3):113-117,155.
11 任文静,贾洪果,闫斌.SBAS-InSAR方法支持下的矿区地表沉降监测及参数反演[J].测绘通报,2021(3):113-117,155.
12 Lei Guangyuan, Zhou Hui. On the low of metal mining subsidence based on SBAS[J]. Engineering of Surveying and Mapping, 2015, 24(3):40-46.
12 雷广渊,周辉.基于SBAS技术的金属矿山沉陷规律研究[J].测绘工程,2015,24(3):40-46.
13 Zhang Xudong, Fu Huanian, Yang Chong. Oilfield reservoir parameter inversion based on nonlinear Bayes inversion algorithms[J]. Bulletin of Surveying and Mapping, 2019(12):137-141.
13 张旭东,符华年,杨崇.结合非线性贝叶斯反演算法的油田储层参数反演[J].测绘通报,2019(12):137-141.
14 Yao Jiaming, Yao Xin, Wu Zuoqi, et al. Inversion of underground goaf in Zhenfeng coal mine in Guizhou Province based on InSAR three-dimension decomposition technology[J]. Journal of Engineering Geology,2020,28(4):852-866.
14 姚佳明,姚鑫,吴作启,等.基于InSAR三维分解技术的贵州省贞丰某煤矿地下采空区反演[J].工程地质学报,2020,28(4):852-866.
15 Li Shanshan, Li Zhiwei, Hu Jun, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013,56(5):1476-1486.
15 李珊珊,李志伟,胡俊,等.SBAS-InSAR技术监测青藏高原季节性冻土形变[J].地球物理学报,2013,56(5):1476-1486.
16 Sun H, Zhang Q, Zhao C Y,et al. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique[J]. Remote Sensing of Environment,2017,188. DOI: 10.1016/j.rse.2016.10.037 .
doi: 10.1016/j.rse.2016.10.037
17 Wang Yan, Liao Mingsheng, Li Deren, et al. Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks[J].Chinese Journal of Geophysics,2007,50(2):598-604.
17 王艳,廖明生,李德仁,等.利用长时间序列相干目标获取地面沉降场[J].地球物理学报,2007,50(2):598-604.
18 Zhang Jinying, Cui Liang, Liu Zengmin, et al. Large-area surface deformation monitoring using Sentinel-1 SAR data and SBAS technology[J]. Bulletin of Surveying and Mapping, 2020(7):125-129.
18 张金盈,崔靓,刘增珉,等.利用Sentinel-1 SAR数据及SBAS技术的大区域地表形变监测[J].测绘通报,2020(7):125-129.
19 Wang Jizhou, Zhang Hua, Zhang Ning. Analysis on the influence of mining on Quaternary aquifer in Shenbei area[J]. Shandong Coal Science and Technology, 2010(5): 109-110.
19 王济洲,张华,张宁.矿山开采对沈北地区第四系含水层影响分析[J].山东煤炭科技, 2010(5): 109-110.
20 Chen Tianyu, Feng Xiating, Liang Bing, et al. Grey Fuzzy evaluation of CBM decelopment and area selection[J]. Journal of Northeastern University(Natural Science Edition), 2013,34(3):429-433.
20 陈天宇,冯夏庭,梁冰,孙维吉.煤层气藏地面勘探开发选区灰色模糊评价[J].东北大学学报(自然科学版), 2013, 34(3):429-433.
21 An Bingqi, Luo Haibin, Ding Haiyong, et al. Monitoring of surface deformation in Xining based on SBAS-InSAR[J]. Remote Sensing Technology and Application, 2021, 36(4): 838-846.
21 安炳琪,罗海滨,丁海勇 等.基于SBAS-InSAR技术的西宁地表形变监测[J].遥感技术与应用, 2021, 36(4): 838-846.
22 Guo Shipeng, Zhang Wangfei, Kang Wei, et al. The study on land subsidence in Kunming by integrating PS, SBAS and DS InSAR[J]. Remote Sensing Technology and Application, 2022, 37(2): 460-473
22 郭世鹏,张王菲,康伟,等. 融合PS、SBAS、DS InSAR技术的昆明地面沉降研究[J]. 遥感技术与应用, 2022, 37(2): 460-473.
[1] 林广坤,吴志峰,曹峥,关文川. 基于SBAS-InSAR技术的围填海区域地面沉降监测[J]. 遥感技术与应用, 2021, 36(6): 1358-1367.
[2] 安炳琪,罗海滨,丁海勇,张志山,王伟,史潇,柯福阳,王明明. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4): 838-846.
[3] 麻源源,左小清,麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6): 1324-1331.
[4] 黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.
[5] 林辉,柯长青. COSMOGSkyMed数据在常州市地表形变监测中的应用[J]. 遥感技术与应用, 2016, 31(3): 599-606.
[6] 宋亚婷,江东,黄耀欢,万华伟. 基于面向对象方法的露天煤矿用地类型提取优先级分析[J]. 遥感技术与应用, 2016, 31(3): 572-579.
[7] 黄丹,刘庆生,刘高焕. 黑岱沟煤矿生态修复遥感监测及效果评价[J]. 遥感技术与应用, 2014, 29(1): 69-74.
[8] 雷坤超,贾三满,陈蓓蓓,罗勇,韩征. 基于PS-InSAR技术的廊坊市地面沉降监测研究[J]. 遥感技术与应用, 2013, 28(6): 1114-1119.
[9] 翟孟源,徐新良,江东,姜小三. 1979~2010年乌海市煤矿开采对生态环境影响的遥感监测[J]. 遥感技术与应用, 2012, 27(6): 933-940.