Please wait a minute...
img

官方微信

遥感技术与应用  2002, Vol. 17 Issue (3): 140-147    DOI: 10.11873/j.issn.1004-0323.2002.3.140
综述     
光谱遥感岩矿识别基础与技术研究进展
甘甫平1,2,王润生2,马蔼乃1,张宗贵2

(1.北京大学遥感与地理信息系统研究所,北京  100871;
2.中国国土资源航空物探遥感中心,北京  100083)
The Development and Tendency of Both Basis and Techniques of Discrimination for Minerals and Rocks Using
Spectral Remote Sensing Data
GAN Fu-ping1,2, WANG Run-sheng2, MA Ai-nai1, ZHANG Gong-gu2
(1.Institute of Remote Sensing and GIS Peking University,Beijing100871,China;
.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources,Beijing100083,China)
 全文: PDF 
摘要:

遥感技术的发展与地物光谱特征的研究密不可分。主要从光谱遥感发展与地质应用的趋势出发,从光谱遥感岩矿识别基础与识别技术方法两方面阐述了光谱遥感的研究进展。对于遥感岩矿的识别基础,主要阐述物谱关联和物理模型研究的技术方法与进展以及其对遥感地质应用的促进与深化。在技术方法方面,主要从多光谱与成像光谱两个层次上,分析利用光谱特征进行岩石矿物识别的研究进展及其潜力与可行性。强调了岩石矿物光谱特征在遥感岩矿识别与地质成因信息提取中的重要性。

关键词: 遥感光谱特征物谱关联光谱物理模型成像光谱多光谱    
Abstract:

Development of remote sensing technique has strongly related with studies of spectral feature of materials. According to tendencies based on between developments of spectral remote sensing and its geological application, this paper described the development and tendency of both basis and technique of discrimination for minerals and rocks. First of all, techniques of both the relationships between materials and spectra and the spectral physical models have been summarized and analyzed. So do developments of them. Secondly, the technique, the potential and the available of application for geology, which used multispectal and hyperspectral remote sensing data, have summarized and discussed. Finally, It is the most important to use spectral feature to extract geological genesis and to quantify the information of mineralization in geological remote sensing.

Key words: Remote sensing    Spectral feature    Relationships between spectra and materials    Spectral
physical models
   Imaging spectrometer    Multispectral remote sensing
收稿日期: 2002-03-05 出版日期: 2011-11-21
:  TP 79  
基金资助:

国家863-308-13-02、国家自然科学基金(49871059)、中国地质调查局重点科研项目(Dk9902062)和地质调查项目
(200115100004)共同资助。

作者简介: 甘甫平(1971-),男,博士后,主要从事高光谱技术与应用,遥感信息模型等研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

甘甫平,王润生,马蔼乃,张宗贵. 光谱遥感岩矿识别基础与技术研究进展[J]. 遥感技术与应用, 2002, 17(3): 140-147.

GAN Fu-ping, WANG Run-sheng, MA Ai-nai, ZHANG Gong-gu. The Development and Tendency of Both Basis and Techniques of Discrimination for Minerals and Rocks Using
Spectral Remote Sensing Data. Remote Sensing Technology and Application, 2002, 17(3): 140-147.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2002.3.140        http://www.rsta.ac.cn/CN/Y2002/V17/I3/140

〔1〕  Williams R S, Southworth C S. Remote Sensing Makes Important Gains〔J〕. Geotimes, 1984, 8:13~15.
〔2〕  Gupta R P. Remote Sensing Geology〔M〕. Springer-Verlag Berlin Heidelberg, 1991.
〔3〕  Clark R N, Swayze G A. Evolution in Imaging Spectroscopy Analysis and Sensor Signal-to-noise: An Examination of How Far We Have Come〔A〕. 1996 AVIRIS workshop proceedings 〔Z〕. 1996.
〔4〕 地矿部地质情报所编.遥感专辑(Ⅰ)〔M〕.北京:地质出版社,1980.
〔5〕  Clark R N, King T V V, Klejwa M,et al. High Spectral Resolution Reflectance Spectroscopy of Minerals〔J〕. J Geophys Res, 1990, 95:12653~12680.
〔6〕  Clark N R. 1999,Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy〔M/OL〕. http://speclab. cr.usgs.gov (last revised June 25,1999).
〔7〕  Povarennykh A S. The Use of Infrared Spectra for the Determination of Minerals〔J〕. American Mineralogist,1978,63:956~959.
〔8〕  Gaffey S J. Spectral Reflectance of Carbonates Minerals in the Visible and Near Infrared (0. 35 ~ 2. 55 microns):Calcite, Aragonite, and Dolomite〔J〕. American Mineralogist, 1986, 71:151~162.
〔9〕  Gaffey S J. Spectral Reflectance of Carbonates Minerals in the Visible and Near Infrared (0.35~2.55 um): Anhydrous Carbonate Minerals〔J〕. J Geophysical Research, 1987, 92(B2):1429~1440.
〔10〕  Post J L, Noble P N. The Near-infrared Combination and Frequencies of Dioctahedral Smectites, Micas, and llites〔J〕.Clays and Clay Minerals, 1993,41(6):639~644.
〔11〕  Duke E F. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing〔J〕. Geology, 1994, 22:621~624.
〔12〕  Mustard J F, Pieters C M. Photometric Phase Functions of Common Geologic Minerals and Applications to Quantitative Analysis of Mineral Mixture Reflectance Spectra〔J〕. J Geophysical Research, 1989, 94(B10):13619~13634.
〔13〕  Hapke B. Bidirectional Reflectance Spectroscopy, 1, Theory 〔J〕. Journal of Geophysical Research, 1981, 86: 3039 ~3054.
〔14〕  Johnson P E, Smith M O, Adams J B. Simple Algorithms for Remote Determination of Mineral Abundances and Particles Sizes from Reflectance Spectra〔J〕. J Geophysical Research, 1992, 97(E2):2649~2657.
〔15〕  Lucey P G, Blewwtt D T, Hawke B R. Mapping the FeO and TiO2Content of the Surface with Multispectral Imagery 〔J〕. J Geophysical Research, 1998,103(E2):3679~3699.
〔16〕  Sunshine J M, Pieters C M, Pratt S F. Deconvolution of Minerals Absorption Bands: An Improved Approach〔J〕.Journal of Geophysical Research, 1990, 95 (B5): 6955 ~6966.
〔17〕  Sunshine J M, Pieters C M. Estimating Modal Aboundances from the Spectra of Natural and Laboratory Pryroxene Mixture Using the Modified Gaussian Model〔J〕. Journal of Geophysical Research, 1993,98:9075~9087.
〔18〕  Sunshine J M, Mustard J F. Quantification of Variations in the Mafic Mineralogy of Mars Through MGM Analysis of ISM Spectra〔J〕. Bulletin of the American Astronomical Society, 1994, 26:1113.
〔19〕  Sunshine J M, Pieters C M. Determining the Compositio of Olivine from Reflectance Spectroscopy〔J〕. J Geophysic Research, 1998, 103(E6):13675~13688.
〔20〕  Cloutis E A. Hyperspectral Geological Remote Sensing:Evaluation of Analytical Techniques〔J〕. Int J Remote Sensing, 1996, 17(12):2215~2242.
〔21〕  Mustard J F. Chemical Composition of Actinolite from Reflectance Spectra〔J〕. American Mineralogist, 1992,77:345~358.
〔22〕  Krue F A. Mineral Mapping for Environmental Hazards Assessment Using AVIRIS Data,Leadville,Colorada,USA.Presented at the Eleventh Thematic Conference and Worhshops on Applied Geologic Remote Sensing〔Z〕. Las Vegas, Nevada, 27-29 February,1996,Ⅱ-526-Ⅱ-533.
〔23〕  Green A A, Berman M, Switzer P,et al. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal〔J〕. IEEE Trans Geosci Remote Sens, 1988, 26(1):65~74.
〔24〕  Lee J B, Woodyatt A S, Berman M. Enhancement of Hight Spectral Resolution Remote Sensing Data by a Noise-adjusted Principal Component Transform〔J〕. IEEE Trans Geosci Remote Sens, 1990,28(3):295~304.
〔25〕  Jia X, Richards J A. Segment Principal Components Transformation for Efficient Hyperspectral Remote Sensing Image Display and Classification〔J〕. IEEE Trans Geosci Remote Sens, 1999,37(1):538~542.
〔26〕  Carr J R, Matanawi K. Correspondence Analysis for Principal Components Transformation of Multispectral and Hyperspectral Digital Images〔J〕. PE &RS, 1999,65(8):909~914.
〔27〕  Warner T A, Shank M C. Spatial Autocorrelation Analysis of Yhperspectral Imagery for Feacture Selection〔J〕. Remote Sens Environ, 1997,60:58~70.
〔28〕  Harsanyi J C, Chang C. Hyperspectral Image Classification and Dimensionlity Reduction: An Orthogonal Subspace Projection Approach〔J〕. IEEE Trans Geosci Remote Sens,1994,32(4):779~785.
〔29〕  Lee C, Landgrebe D A. Analysis High-dimensional Multispectral Data〔J〕. IEEE Trans Geosci Remote Sens,1993,31(4):792~800.
〔30〕  Haertel V, Landgrebe D A. On the Classification of Classes with Nearly equal Spectral Response in Remote Sensing Hyperspecttral Image Date〔J〕. IEEE Trans Geosci Remote Sens, 1999,37(5):2374~2386.
〔31〕  Friedl M A, Brodley C E, Strahler H. Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales〔J〕. IEEE Trans Geosci Remote Sens, 1999,37(2):969~977.
〔32〕  Hansen M, Dubayah R, Defries R. Classification Trees: An Alternative to Traditional Land Cover Classifiers〔J〕. Int J Remote Sensing, 1996,17(5):1075~1081.
〔33〕  Gross H N, Schott J R. Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening 〔J〕. Remote Sens Environ, 1998,63:85~94.
〔34〕  Vrabel J. Multispectral Imagery Advanced Band Sharpening Study〔J〕. PE &RS, 2000,66(1):73~79.
〔35〕  Jimenez L O, Morales-morell A, Creus A. Classification of Hyperdimensinal Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural Networks〔J〕. IEEE Trans Geosci Remote Sens,1999, 37(3):1360~1366.
〔36〕  Pohl C. Tools and Methods Used in Data Fusion〔A〕.Gudmandsen(ed). Future Trends in Remote Sensing〔C〕.Balkema, Rotterdam, 1998.
〔37〕  Robinson G D, Gross H N, Schott J R. Evaluation of Two Applications of Spectral Mixing Models to Image Fusion〔J〕.Remote Sens Environ, 2000,71:272~281.
〔38〕  Price J C. Combining Multispectral Data of Differing Spatial Resolution〔J〕. IEEE Trans Geosci Remote Sens, 1999, 37(3):1199~1204.
〔39〕 王润生,杨文义,黄大年,等.地质勘查图像综合与分析〔M〕.北京:地质出版社,1992.
〔40〕 陈述彭,童庆禧,郭华东.遥感信息机理研究〔M〕.北京:科学出版社,1998.
〔41〕  Kruse F A. Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada, and California〔J〕. Remote Sens Environ, 1988,24:31~51.
〔42〕  Crowley J K, Brickey D W, Rowan L C. Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana:Mineral Discrimination Using Relative Absorption Banddepth Images〔J〕. Remote Sens Environ, 1989, 29: 121 ~134.
〔43〕  De Jong S M. Imaging Spectrometry for Monitoring Tree Damage Caused by Volcanic Activity in the Long Valley Caldera, California〔J〕. ITC Journal, 1998,1:1~10.
〔44〕 王晋年,郑兰芬,童庆禧.成像光谱图像光谱吸收鉴别模型与矿物填图研究〔J〕.环境遥感,1996,11(1):20~31.
〔45〕  Baugh W M, Kruse F A, William W,et al. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible/infrared Imaging Spectrometer ( AVIRIS )〔J〕.Remote Sens Environ, 1998,65:292~308.
〔46〕  Fenstermaker L K, Miller J R. Identification of Fluvially Redistributed Mill Tailings Using High Spectral Resolution Aircraft Data, Photogrammetric Engineering Remote Sensing, 1994, 60(8):989~995.
〔47〕  BEN-DOR E, Kruse F A. Surface Mineral Mapping of Makhtesh Ramon Negev, Israel Using GER 63 Channel Scanner Data〔J〕. Int J Renote Sensing, 1995,16(8):3529~3553.
〔48〕  Crosta A P, Sabine C, Taranik J V. Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data〔J〕. Remote Sens Environ, 1998, 65:309~319.
〔49〕  Drake N A, Mackin S, Settle J J. Mapping Vegetation,Soil, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery 〔J〕. Remote Sens Environ, 1998,68:12~25.
〔50〕  Yuhas R H, Geotz F H A, Boardman J W. Discrimination Among Semiarid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm〔A〕. Summaries of the Third Annual JPL Airborne Geoscience workshop〔Z〕. 1 June 1992, Pasadena, CA,JPL Publication 92-14, 1992.
〔51〕  Ferrier G. Application of Image Spectrometer Data in Identifying Environmental Pollution Caused by Mining at Rodaquilar, Spain〔J〕. Remote Sens Environ, 1999,68:125~137.
〔52〕  Var der Meer F. Performance Characteristics of the Indicator Classifier on Simulated Image Data〔J〕. Int J Remote Sensing, 1996, 17(3):621~627.
〔53〕  Var der Meer F. CCSM: Cross Correlogram Spectral Matching〔J〕. Int J Remote Sensing, 1997,18(5):1197~1201.
〔54〕 甘甫平,王润生,江思宏,等.基于完全谱形特征的成像光谱遥感岩矿识别技术及其应用〔J〕.地质科学, 2000,35(3):376~384.
〔55〕  Adams J B, Smith M O, Johnson P E. Spectral Mixture Modeling: A New Analysis of Rock and Soil Type at the Viking Lander 1 Site〔J〕. Journal of Geophysical Research,1986, 91(B8):8098~8112.
〔56〕  Mustard J F, Pieters C M. Abundance and Distribution of Ultramafic Microbreccia in Moses Rock Dike: Quantitative Application of Mapping Spectroscopy〔J〕. Journal of Geophysical Research, 1987, 92(B10):10376~10390.
〔57〕  Roberts D A, Gardner M, Church R,et al. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixing Models〔J〕. Remote Sens Environ, 1998, 65:267~279.
〔58〕  Sabol D E, Adams J B, Smith M O. Quantitative Subpixel Spectral Detection of Targets in Multispectral Images〔J〕.Journal of Geophysical Research, 1992, 97( E2):2659~2672.
〔59〕  Settle J J, Drake N A. Linear Mixing and the Estimation of Ground Cover Proportions〔J〕. Int J Remote Sensing, 1993,14(6):1159~1177.
〔60〕  Shipman H, Adams J B. Detectability of Minerals on Desert Alluvial Fans Using Reflectance Spectra〔J〕. Journal of Geophysical Research,1987,92(B10):10391~10420.
〔61〕  Shimabukuro Y E, Smith J A. The Least-squares Mixing Models to Generate Fraction Derived from Remote Sensin Multispectral Data〔J〕. IEEE Trans Geos Remote Sens,1991, 29(1):16~20.
〔62〕  Smith M O, Johnson P E, Adams J B. Quantitative Determination of Mineral Type and Abundances from Reflectance Spectra Using Principal Components Analysis 〔J〕. Journal of Geophysical Research, 1985, 90(sup.): c797~c804.
〔63〕  Tompkins S, Mustard J F, CarléM P. Optimization of Endmembers for Spectral Mixture Analysis〔J〕. Remote Sens Environ, 1997,59:472~489.
〔64〕  Farrand W H, Seelos A. Using Mineral Maps Generated from Imaging Spectrometer Data to Map Faults: An Example from Summitville, Colorado〔A〕. The Eleventh Thematic Conference and Workshops on Applied Geologic Raemote Sensing〔Z〕. Las Vegas, Nevada, 27-29february 1996,Ⅱ-222-Ⅱ-228.
〔65〕  Farrand W H, Harsanyi J C. Mapping the Distribution of Mine Tailing in the Coeur D' alene River Valley, Idho,Through the Use of a Constrained Energy Minimization Technique〔J〕. Remote Sens Environ, 1997, 59:64~76.
〔66〕  Resmini R G, Kappus M E, Aldrich W S,et al. Mineral Mapping with Hyperspetral Digital Imagery Collection Experiment(HYDICE) Sensor Data at Cuprite, Nevada, U.S.A〔J〕. Int J Remote Sensing, 1997, 18(7): 1553~1570.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[5] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[6] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[7] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[8] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[9] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[10] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[11] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[12] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[13] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[14] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[15] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.