Please wait a minute...
img

官方微信

遥感技术与应用  2003, Vol. 18 Issue (4): 233-236    DOI: 10.11873/j.issn.1004-0323.2003.4.233
研究与应用     
植物生化组分遥感探测的光谱统计参数比较
阮伟利,颜春燕,牛 铮
(中国科学院遥感应用研究所遥感信息科学重点实验室,北京 100101)
Comparison of Spectral Statistical Parameters about Plant Biochemical Concentration Determination with Remote Sensing
RUAN Wei-li, YAN Chun-yan, NIU Zheng
(Key Laboratory of Remote Sensing Information Sciences,Institute of Remote Sensing Applications,Chinese Academy of Sciences,Beijing100101,China)
 全文: PDF 
摘要:

利用统计分析方法,分析了叶片叶绿素和氮含量与其光谱特性的统计关系,分别建立了log(1/R)、反射率一阶导数(FDS)、对波深中心归一化(BNC)及对波深面积归一化(BNA)的光谱形式与叶片叶绿素和氮含量的统计方程,并对这4个指标的性能进行了比较和评价。结果表明采用描述光谱吸收特征的参数BNC和BNA,能够提高遥感估算植物生化组分含量的效果,特别是对氮的估算,其预测值与测量值的相关系数R达到0.960。

关键词: 生化组分波深中心归一化波深面积归一化    
Abstract:

Based on analyzing the concentration of two biochemical components, including total chlorophyll and nitrogen, we establish the statistical relationships between the concentration and inverse-log spectra (log 1/R)through the stepwise multiple regression method. So do the relationships between the concentration and several transformations of reflectance such as standard first derivative reflectance spectra (FDS), absorption band depths following continuum removal and normalization against band depth at the center of the absorption feature (BNC), absorption band depths following continuum removal and normalization against the area of the absorption feature(BNA).The results show very different performances among these four spectral statistical parameters ,including the selections of bands, the results of stepwise multiple regression and the effects of the statistical equations. This just illustrates uncertainty when using statistical methods to determine plant biochemical concentration. However, we still get good prediction performance for chlorophyll and nitrogen with BNC and BNA. Especially, R value of the correlation between estimated and observed nitrogen concentration is 0.960. We get these results on a spectra/biochemical data set fromdried and ground Douglas Fir. Further research work should be done to determine foliar biochemical concentration from field, airborne and spaceborne spectra.

Key words: Biochemical concentration    Band normalized to center    Band normalized to area
收稿日期: 2003-04-15 出版日期: 2011-11-24
:  TP 79   
基金资助:

中国科学院知识创新工程重大项目(KZCX1-SW-01),国家重点基础研究发展规划项目(G2000077900)及国家自然科学基金资助项目(40271086)资助。

作者简介: 阮伟利(1979-),女,硕士生,从事植被遥感及全球变化遥感研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

阮伟利,颜春燕,牛 铮. 植物生化组分遥感探测的光谱统计参数比较[J]. 遥感技术与应用, 2003, 18(4): 233-236.

RUAN Wei-li, YAN Chun-yan, NIU Zheng. Comparison of Spectral Statistical Parameters about Plant Biochemical Concentration Determination with Remote Sensing. Remote Sensing Technology and Application, 2003, 18(4): 233-236.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2003.4.233        http://www.rsta.ac.cn/CN/Y2003/V18/I4/233

〔1〕Treitz P M, Howarth P J. Hyperspectral Remote Sensing for Estimating Biophysical Parameters of Forest Ecosystem〔J〕.Progress in Physical Geography, 1999,23: 359~390.
〔2〕Jacquemoud S, Ustin S L. Leaf Optical Properties: A State of the Art〔A〕. Pro. 8th International Symposium Physical Measurements &Signatures in Remote Sensing〔C〕.Aussois(France), 2001. 223~232.
〔3〕Jacquemoud S, Ustin S L, Verdebout J,et al. Estimating Leaf Biochemistry Using the PROSPECT Leaf Optical Properties Model〔J〕. Remote Sensing of Environment, 1996,56:194~202.
〔4〕Curran P J, Dungan J L, Peterson D L. Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry: Testing the Kokaly and Clark Methodologies〔J〕. Remote Sensing of Environment, 2001, 76: 349~359.
〔5〕Kokaly R F, Clark R N. Spectroscopic Determination of Leaf Biochemistry Using Band-depth Analysis of Absorption Features and Stepwise Multiple Linear Regression〔J〕. Remote Sensing of Environment, 1999,67: 267~287.
〔6〕Yan C Y, Liu Q, Niu Zh,et al. Estimating Foliar Chlorophyll Concentration at Leaf and Canopy Level:Testing and Evaluating An Empirical Methodology〔A〕.Proceedings of the First Quantitative Symposium on Remote Sensing〔C〕.Spain,2002, Forthcoming.
〔7〕Barbara J, Yoder, Rita E. Predicting Nitrogen and Chlorophyll Content and Concentrations from Reflectance Spectra(400-2500nm) at Leaf and Canopy Scales〔J〕. Remote Sensing of Environment, 1995,53: 199~211.
〔8〕牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析〔J〕.遥感学报,4(2):125~130.
〔9〕吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究〔J〕.遥感学报,2000,4(3):228~232.
〔10〕刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析〔J〕.遥感学报,2000,4(4):279~283.
〔11〕王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况〔J〕.中国农业科学,2001,34(1):1~4.
〔12〕王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究〔J〕.农业工程学报,2002,18(1):9~13.
〔13〕Aber J D, Martin M E. Visible and Near-Infrared Leaf Reflectance Spectra〔R〕. 1992-1993 (ACCP).
〔14〕Yoder B, Johnson L. Seedling Canopy Chemistry〔R〕.1992-1993 (ACCP).

[1] 徐新刚,李强子,周万村,吴炳方. 应用高分辨率遥感影像提取作物种植面积[J]. 遥感技术与应用, 2008, 23(1): 17-23.
[2] 李玉凤,王 波,李小明. 基于SPOT5影像的山东南四湖地被覆盖分类研究[J]. 遥感技术与应用, 2008, 23(1): 62-66.
[3] 郭 虎,王 瑛,王 芳. 旱灾灾情监测中的遥感应用综述[J]. 遥感技术与应用, 2008, 23(1): 111-116.
[4] 毛先成, 熊靓辉, 高岛?勋. 基于MOS-1b/MESSR的洪灾遥感监测[J]. 遥感技术与应用, 2007, 22(6): 685-689.
[5] 韩玲, 卜晓翠. 基于ERDAS的蚀变遥感异常提取方法[J]. 遥感技术与应用, 2007, 22(6): 696-699.
[6] 吕航, 陈圣波, 孟治国, 汪自军, 宋金红. 基于RS与GIS的大尺度水土流失分级制图[J]. 遥感技术与应用, 2007, 22(6): 715-717.
[7] 周为峰, 樊伟. 应用MODIS进行赤潮遥感监测的研究进展[J]. 遥感技术与应用, 2007, 22(6): 768-772.
[8] 李凤秀, 张柏, 宋开山, 王宗明, 刘焕军, 杨飞. 玉米叶面积指数与高光谱植被指数关系研究[J]. 遥感技术与应用, 2007, 22(5): 586-592.
[9] 孙焱鑫,王纪华,李保国,刘良云,黄文江,赵春江. 基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究[J]. 遥感技术与应用, 2007, 22(4): 492-496.
[10] 代晶晶,聂跃平. 基于高分辨率遥感数据的长城自动提取实验研究[J]. 遥感技术与应用, 2007, 22(4): 520-523.
[11] 李 怡,张世熔,李 婷,刘 宇,张 林. 基于ASTER影像的高山峡谷区主要地类自动提取方法研究[J]. 遥感技术与应用, 2007, 22(3): 389-395.
[12] 黄妙芬,齐小平,于五一,张一民. 水环境石油类污染遥感识别模式及其应用[J]. 遥感技术与应用, 2007, 22(3): 314-320.
[13] 林云杉,徐涵秋,周 榕. 城市不透水面及其与城市热岛的关系研究—以泉州市区为例[J]. 遥感技术与应用, 2007, 22(1): 14-19.
[14] 王明常,何 月,邢立新,许军强,吕凤军. 吉林西部遥感水域空间格局演变研究[J]. 遥感技术与应用, 2007, 22(1): 45-49.
[15] 叶 琳, 徐涵秋. 闽江流域福州段悬浮物浓度的遥感分析[J]. 遥感技术与应用, 2006, 21(6): 497-501.