Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2006, Vol. 21 Issue (4): 271-276    DOI: 10.11873/j.issn.1004-0323.2006.4.271
article     
A Simulated Annealing Algorithm for Retrieval of Vegetation Parameter from Optical Remote Sensing Data
HUANG Chun-lin, LI Xin, LU Ling
Download:  PDF (0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

 The optimization approach is one of the most promising methods for retrieval of vegetation parameter from canopy reflectance model based on optical remote sensing data. In this study , a canopy reflectance model ( SAIL, Scattering by Arbitrarily Inclined Leaves) is adopted as forward model and three different simulated annealing algorithms( Boltzman simulated annealing, fast simulated annealing and very fast simulated re-annealing ) are developed as global optimization scheme to simultaneously retrieve leaf area index and content of chlorophy ll, respectively . The Sum of Squared Residuals (SSR) between spectral reflectance by SAIL model and by observation is selected as cost function. The performance of these algorithms is demonstrated with simulated data sets. We can draw following conclusions: ① this algorithm is able to escape local energy minima and can converge to a global energy minimum; ② the very fast simulated re-annealing algorithm priorto Boltzman simulated annealing and fast simulated annealing ;  ③under no noise conditions, we can obtain the estimation of leaf area index and chlorophyll content accurately .

Key words:  Vegetation parameter      Inversion      SAIL      Simulated annealing algorithm      Optical remote sensing     
Received:  14 December 2005      Published:  27 September 2011
TP 79  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

HUANG Chun-lin, LI Xin, LU Ling. A Simulated Annealing Algorithm for Retrieval of Vegetation Parameter from Optical Remote Sensing Data. Remote Sensing Technology and Application, 2006, 21(4): 271-276.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2006.4.271     OR     http://www.rsta.ac.cn/EN/Y2006/V21/I4/271


〔1〕 Bonan G B. Importance of Leaf Area Index and Forest Type When Estimating Photosynthesis in Boreal Forests〔J〕.Remote
Sensing of Environment , 1993, 43: 303~314.
〔2〕 Sellers P J, Mintz Y. A Simple Biosphere Model ( SiB) for Use Within General Circulation Models 〔J〕.Journal of the
Atmosphere Sciences, 1986, 43: 505~531.
〔3〕 Sellers P J , Randall D A, Collatz G J, et al . A Revised Land Surface Parametrization ( SIB2 ) for Atmospheric GCMs :
Part I. Model for mulation〔J〕.Journ al of Climate, 1996, 9:676~705.
〔4〕 Sellers P J , Tuck er C J, Collatz G J, et al . A Global 1 by 1 NDVI Data Set for Climate Studies : Part 2. The Generation of Global Fields of Terrestrial Biophysical Parameters from the NDVI〔J〕. International Journal of Remote Sensing ,1994, 15: 3519~3545.
〔5〕 Chen J M , Cihlar J . Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images〔J〕.Remote Sensing of Environment , 1996, 55: 153~162.
〔6〕 Chen J M , Rich P M, Gower S T, et al. Leaf Area Index of Boreal Forests : Theory , Techniques and Measurements〔J〕.
Journal of Geophysical Research, 1997, 102: 29429~29443.
〔7〕 Turner D P, Cohen W B, Kennedy R E , et al. Relationship Between Leaf Area Index and Landsat TM Spectral Vegetation
Indices Across Three Temperate Zone Sites〔J〕.Remote Sensing of Environment , 1999, 70: 52~68.
〔8〕 Fassnacht K S , Gower S T , MacKenzie M D, et al. Estimating the Leaf Area Index of North Central Wiscons in Forests Using the Landsat Thematic Mapper〔J〕.Remote Sensing of Environment, 1997, 61: 229~245.
〔9〕 Knyazikhin Y, Martonchik J V, Diner D J, et al . Estimation of Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from Atmosphere-corrected MISR Data〔J〕.J Geophys Res , 1998, 103:32239~32256.
〔10〕 Goel N S, Thompson R L. Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables . V.Estimation of Leaf Area Index and Average Leaf Inclination Angle Using Measured Canopy Reflectance 〔J 〕. Remote Sensing Environ, 1984, 15: 69~85.
〔11〕 Geol N S, Deering D. Evaluati on of A Canopy Reflectance Model for LAI Estimation Through Its Inversion〔J〕.IEEE Trans Geosci And Remote Sensing, 1989, 23: 674~684.
〔12〕 Liang S, Strahler A H. An Analytic BRDF Model of Canopy Radiative Transfer and Its Inversion〔J〕.IEEE Trans Geosci And Remote Sensing, 1993, 31: 1081~1092.
〔13〕 Gong P, Wang S X, Liang S. Inverting A Canopy Reflectance Model Using A Neural Network〔J〕.Int J Remote Sensing, 1999, 20: 111~122.
〔14〕 Fang H, Liang S. Retrieve LAI from Landsat 7 ETM+ Data with A Neural Network Method: Simulation and Validation Study〔J〕. IEEE Transactions on Geosciences and Remote Sensing, 2003, 41: 2052~2062.
〔15〕 Fang H, Liang S. Retrieving LAI Using A Genetic Algorithm with a Canopy Radiative Transfer Model〔J〕.Remote Sensing of Environment , 2003, 85: 257~270.
〔16〕 Weiss M, Baret F, Leroy M , et al . Validation of Neural Net Techniques to Estimate Canopy Biophysical Variables from
Remote Sensing Data〔J〕.Agronomie, 2002, 22: 547~553.
〔17〕 Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by Simulated Annealing〔J〕.Science, 1983, 220: 671~680.
〔18〕 Li Xin, Koike T , Pathmathevan M. A Very Fast Simulated Re-annealing ( VFSA) Approach for Land Data Assimilation〔J〕.
Computer & Geosciences, 2004, 30: 239~248.
〔19〕 Verhoef W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: The SAIL Model〔J〕.Remot e Sensing Environ , 1984, 16: 125~141.
〔20〕 Jacquemoud S , Bacour C, Polve H, et al . Comparison of Four Radiative Transfer Models to Simulate Plan t Canopies Reflectance: Direct and Inverse Model〔J〕.Remote Sensing Environ, 2000, 74: 471~481.
〔21〕 Andrieu B, Bar et F, Jacquemoud S, et al . Evaluation of An Improved Version of SAIL Model to Simulate bi-directional Reflectance of Sugar Beet Canopies〔J〕.Remote Sensing Environ,1997, 60: 247~257.
〔22〕 Badwahr G, Bunnik N, Verhoef W. Comparative Study of Suits and SAIL Canopy Reflectance Models 〔J〕. Remote Sensing Environ, 1985, 17: 179~195.
〔23〕 Major D, Schaalje G, Wiegand C, et al . Accuracy and Sensitivity Analysis of SAIL Model-predicted Reflectance of Maize
〔J〕.Remote Sensing Environ, 1992, 41: 61~70.
〔24〕 Jacquemoud S. Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study〔J〕. Remote Sensing Environ, 1993, 44: 281~292.
〔25〕 Jacquemoud S , Baret F. PROSPECT : A Model of Leaf Optical Properties Spectra〔J〕.Remote Sensing Environ, 1990,34: 75~91.
〔26〕 Ingber L. Very Fast Simulated Re-ann ealing〔J〕.Mathematical Computer Modelling, 1989, 12: 967~973.
〔27〕 Ingber L. Simulated Annealing: Practice Versus Theory〔J〕.Mathematical Computer Modeling, 1993, 18: 29~57.

No Suggested Reading articles found!