Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2019, Vol. 34 Issue (5): 1040-1047    DOI: 10.11873/j.issn.1004-0323.2019.5.1040
    
Influence of the Different Spatial Resolutions for Alteration Mineral Mapping
Lei Liu1(),Mengmeng Wu1,Cuijing Yin1,Jun Zhou1,2,Wenyang Xie1,Chuntao Yin1
1.Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits,MNR,School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China
2.Xi'an Spacetime Geo-mineral Technology Limited,Xi’an 710068,China
Download:  HTML  PDF (5520KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Vein-type alterations are extensively distributed and normally very thin, the extraction of these alteration zones is affected by the spatial resolution of remote sensing data seriously. To evaluate the ability of different spatial resolutions for alteration mineral mapping, taking Jintanzi area as the study area, the pixel of airborne CASI/SASI hyperspectral data were resampled to 5 m, 10 m, 15 m, 20 m and 30 m. The spectrum of muscovite from JPL spectral library and matched filtering method were utilized to extract the distribution of muscovite minerals. Spectra of pixels show that for alteration of large areas the spectral features are influenced weakly by the changing of spatial resolution and all the absorption features could be retained. Comparably, for the thin vein-type alteration, with the degradation of spatial resolution, the effect of the mixed pixel is more serious. Thus, the absorption feature of image spectra is very shallow. When the spatial resolution is 30 m, the absorption is weakest and difficult to be identified. The mapping results of the muscovite show that the thin vein-type alteration (about 1 to 5 meters wide) could be identified in the images with resolution of 5 m, 10 m and 15 m, while it is difficult for the images with resolution of 20 m and 30 m to detect.

Key words:  Spatial resolution      Vein-type alteration      Areal alteration      Jintanzi area     
Received:  24 July 2018      Published:  05 December 2019
ZTFLH:  TP79  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Lei Liu
Mengmeng Wu
Cuijing Yin
Jun Zhou
Wenyang Xie
Chuntao Yin

Cite this article: 

Lei Liu,Mengmeng Wu,Cuijing Yin,Jun Zhou,Wenyang Xie,Chuntao Yin. Influence of the Different Spatial Resolutions for Alteration Mineral Mapping. Remote Sensing Technology and Application, 2019, 34(5): 1040-1047.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2019.5.1040     OR     http://www.rsta.ac.cn/EN/Y2019/V34/I5/1040

Fig.1  Photographs of alteration zones
样品编号主要矿物含量
J703-DQ1石英(27%)钠长石(8%)绿帘石(65%)///
J703-Qz2石英(49.2%)白云母(50.8%)////
J703-G1-1石英(31%)白云母(20%)钠长石(5%)绿泥石(10%)高岭土(30%)石膏(4%)
J703-G1-2石英(23%)白云母(15%)钠长石(33%)方解石(8%)绿泥石(19%)石膏(2%)
Table 1  Typical sample mineralogy determined from X-Ray Diffraction analysis
Fig.2  Representative spectra of altered rock samples measured in the laboratory and Laboratory reflectance spectra of three typical alteration minerals (after JPL Spectral Library)
Fig.3  The CASI/SASI image of the Jintanzi area
Fig.4  Images of 5m to 30m spatial resolution
Fig.5  Image spectral features of the areal altered target in the five spatial resolutions
Fig.6  Image spectral features of the altered wide vein in the five spatial resolutions
Fig.7  Image spectral features of the altered thin vein in the five spatial resolutions
Fig.8  Muscovite distribution of different spatial resolution images
1 Zhang Yujun, Zeng Chaoming, Chen Wei. The Methods for Extraction of Alteration Anomalies from the ETM+ (TM) Data and Their Application: Method Selection and Technological Flow Chart[J].Remote Sensing for Land & Resources,2003,2:44-49.
1 张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,2:44-49.
2 Fu B H, Zheng G D, Ninomiya Y, et al. Mapping Hydrocarbon-induced Mineralogical Alteration in the Northern Tian Shan Using ASTER Multispectral Data[J]. Terra Nova,2007,19(4):225-231.
3 Liu L, Zhuang D F, Zhou J, et al. Alteration Mineral Mapping Using Masking and Crosta Technique for Mineral Exploration in Mid-vegetated Areas: A Case Study in Areletuobie, Xinjiang (China)[J]. International Journal of Remote Sensing,2011,32(7):1931-1944.
4 Li Miaomiao, Xing Lixin, Pan Jun, et al. Research of Combinatory Analysis Method in Altered Information Extraction[J]. Remote Sensing Technology and Application,2011,26(3):308-313.
4 李淼淼,刑立新,潘军,等.组合分析蚀变信息提取方法研究[J].遥感技术与应用,2011,26(3):308-313.
5 Pour B A, Hashim M. Identification of Hydrothermal Alteration Minerals for Exploring of Porphyry Copper Deposit Using ASTER Data, SE Iran[J]. Journal of Asian Earth Sciences,2011,42(6):1309-1323.
6 Zhang Yujun, Yao Fojun. Application Study of Multi-spectral ASTER Data for Determination of ETM Remote Sensing Anomaly Property: Taking Wulonggou Region of Eastern Kunlun Mountain Range as Example[J]. Acta Petrologica Sinica,2009,25(4):963-970.
6 张玉君,姚佛军.应用多光谱ASTER数据对ETM遥感异常的定性判别研究——以东昆仑五龙沟为例[J].岩石学报,2009,25(4):963-970.
7 Liu Lei, Zhou Jun, Yin Fang, et al. Alteration Mineral Mapping and Ore Prospecting based on ASTER Data in Balikun, Xinjiang[J]. Remote Sensing Technology and Application, 2013,28(4):556-561.
7 刘磊,周军,尹芳,等.基于ASTER数据的巴里坤地区蚀变矿物填图与找矿[J].遥感技术与应用,2013,28(4):556-561.
8 Liu L, Zhou J, Jiang D, et al. Targeting Mineral Resources with Remote Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China [J]. Remote Sensing, 2013,5(7): 3156-3171.
9 Liu L, Zhou J, Yin F, et al. The Reconnaissance of Mineral Resources Through ASTER Data-based Image Processing, Interpreting and Ground Inspection in the Jiafushaersu area, West Junggar, Xinjiang (China) [J]. Journal of Earth Science, 2014, 25(2): 397-406.
10 Wei J, Liu X N, Ding C, et al. Developing a Thermal Characteristic Index for Lithology Identification Using Thermal Infrared Remote Sensing Data[J]. Advances in Space Research, 2017, 59:74-87.
11 Rajendran S, Nasir S. ASTER Capability in Mapping of Mineral Resources of arid Region: A Review on Mapping of Mineral Resources of the Sultanate of Oman[J]. Ore Geology Reviews, 2019, 108: 33-53.
12 Guha A, Kumar K V, Porwal A, et al. Reflectance Spectroscopy and ASTER based Mapping of Rock-phosphate in Parts of Paleoproterozoic Sequences of Aravalli Group of Rocks, Rajasthan, India[J]. Ore Geology Reviews, 2019, 108: 73-87.
13 Pour A B, Hashim M, Hong J K, et al. Lithological and Alteration Mineral Mapping in Poorly Exposed Lithologies Using Landsat-8 and ASTER Satellite Data: North-eastern Graham Land, Antarctic Peninsula[J]. Ore Geology Reviews, 2019, 108: 112-133.
14 Liu L, Feng J L, Rivard B, et al. Alteration Mapping Results Using Spaceborne Tiangong-1 Hyperspectral Imagery: Example from the Jintanzi Gold Province, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 275-286.
15 Zhang Bing, Zhou Jun, Wang Junnian. Analyses of Alteration Mineral Mapping and Mineral Resources Prospecting Using TM or ETM Data[J]. Journal of Earth Sciences and Environment,2008,30(3):452-952.
15 张兵,周军, 王军年.遥感蚀变矿物填图与找矿方法[J].地球科学与环境学报,2008,30(3):452-952.
16 Yang Hequn, Li Ying, Yang Jianguo, et al. Main Metallogenic Characteristics in the Beishan Orogen[J]. Northwestern Geology,2006,39(2):78-95.
16 杨合群,李英,杨建国.北山造山带的基本成矿特征[J].西北地质,2006, 39(2):78-95.
17 Yang Jianguo, Wang Lei, Wang Xiaohong, et al. Zircon SHRIMP U-Pb Dating of Heishan Mafic-ultramafic Complex in the Beishan Area of Gansu Province and Its Geological Significance[J]. Geological Bulletin of China, 2012,31(2/3):448-454.
17 杨建国,王磊,王小红,等.甘肃北山地区黑山铜镍矿化基性-超基性杂岩体SHRIMP锆石U-Pb定年及其地质意义[J].地质通报,2012,31(2/3):448-454.
18 Ren Guangli, Yang Junlu, Yang Min, et al. Application of Hyperspectral Remote Sensing Anomaly Information on Metallogenic Prediction in the Jintanzi-Mingjingou Area of Beishan, Gansu[J]. Geotectonica et Metallogenia,2013,37(4):765-776.
18 任广利,杨军录,杨敏,等.高光谱遥感异常提取在甘肃北山金滩子-明金沟地区成矿预测中的应用[J].大地构造与成矿学,2013,37(4):765-776.
19 Boardman J W, Kruse F A, Green R O. Mapping Target Signatures Via Partial Unmixing of AVIRIS Data[C]∥ Fifth JPL Airborne Earth Science Workshop. JPL Publication, 1995:23-26.
20 Markham B L, Barker J L, Kaita E, et al. On-orbit Performance of the Landsat-7 ETM+ Radiometric Calibrators[J]. International Journal of Remote Sensing, 2003, 24(2): 265-285.
21 Liu L, Zhou J, Han L, et al. Mineral Mapping and Ore Prospecting Using Landsat TM and Hyperion Data, Wushitala, Xinjiang, Northwestern China[J].Ore Geology Reviews, 2017, 81(3): 280-295.
22 Liu L, Zhou J, Jiang D,et al.Mineral Resources Prospecting by Synthetic Application of TM/ETM+,QuickBird and Hyperion Data in the Hatu Area,West Junggar,Xinjiang,China[J].Scientific Reports, 2016,6:21851. doi: .
doi: 10.1038/srep21851
[1] TIAN Xu-wen, YANG Ru-liang. The Analyzation of SAR Image Adaptive Sidelobe Reduction Algorithms and Experiments[J]. Remote Sensing Technology and Application, 2002, 17(3): 148 -153 .
[2] XI Yu-xiao, YANG Ru-liang. Experiment on Whitt's Polarimetric SAR Calibration
Algorithm Using Point Targets
[J]. Remote Sensing Technology and Application, 2002, 17(4): 220 -223 .
[3] . [J]. Remote Sensing Technology and Application, 1987, 2(3): 61 -66 .
[4] . [J]. Remote Sensing Technology and Application, 1988, 3(4): 29 -36 .
[5] . [J]. Remote Sensing Technology and Application, 1988, 3(4): 44 -49 .
[6] . [J]. Remote Sensing Technology and Application, 2001, 16(1): 40 -44 .
[7] XU Wei-ming, SHU Rong. Two Methods of Multi-sensor Synchronization with GPS Receiver[J]. Remote Sensing Technology and Application, 2003, 18(6): 404 -406 .
[8] YANG Jian, PENG Ying-ning. Recent Development of the Optimization of Polarimetric Contrast Enhancement[J]. Remote Sensing Technology and Application, 2005, 20(1): 38 -41 .
[9] PENG Qing-qing,YANG Liao,WANG Jie,SHEN Jin-xiang. Endmember Extraction based on Anomaly Detection[J]. Remote Sensing Technology and Application, 2011, 26(4): 457 -460 .
[10] Li Qin,Chen Xi,Bao Anming,Xu Zhenghe,Zhao Qiang. Evapotranspiration Estimation in Arid Areas based on SEBS Model[J]. Remote Sensing Technology and Application, 2014, 29(2): 195 -201 .