%A Zhirong Yan,Liangyun Liu,Xia Jing %T Spatiotemporal Variations of Satellite-based SIF and Its Climate Response in China from 2007 to 2018 %0 Journal Article %D 2022 %J Remote Sensing Technology and Application %R 10.11873/j.issn.1004-0323.2022.3.0702 %P 702-712 %V 37 %N 3 %U {http://www.rsta.ac.cn/CN/abstract/article_3530.shtml} %8 2022-06-20 %X

Based on the GOME-2 satellite SIF dataset, we analyzed the spatial and temporal changes of SIF from 2007 to 2018 in China, and investigated the response of SIF to climate changes, such as temperature, precipitation, and radiation. The results showed that: (1) The SIF in China's vegetation region generally shows a decreasing distribution from southeast to northwest. The average annual SIF increases by 20.2% in last 12 years, with an amplitude of 0.034 mW/m2/sr/nm, and the increase area accounts for 80.3% of the whole China. The area with significant growth of SIF accounts for 25.7%, which were mainly distributed in eastern, southern and northeastern China. (2) The SIF increase in summer season during last twelve years is the largest with an amplitude of 0.065 mW/m2/sr/nm; the area with increased summer SIF accounts for 82.1% of the whole China, and the area with significant increase accounts for 19.4%. (3) The response of SIF to climate change was investigated using the partial correlation method. temperature is the main factor affecting the interannual variation of SIF; precipitation is the main driven factor for SIF in warm temperate and temperate vegetation regions; human activities are more likely to affect the growth of SIF in the green broad-leaved forest area; radiation is the driven factor for tropical monsoon rain forest areas located in low latitudes. The above results reveal the temporal and spatial changes of vegetation fluorescence in China from 2007 to 2018 and its response to climate change, which can provide important support for global carbon cycle research.