基于CNN的吉林一号卫星城市土地覆被制图潜力评估
吕冬梅,马玥,李华朋

Evaluating the Potential of JL1 Remote Sensing Data in Urban Land Cover Classification Using Convolutional Neural Networks
Lü Dongmei,Yue Ma,Huapeng Li
表3 不同分类方法生产者精度对比
Table 3 Comparison of produce′s accuracy between different classification methods
地物类型S1实验区 PA/%地物类型S2实验区 PA/%
MLCMLPSVMCNNMLCMLPSVMCNN
混凝土屋顶32.3556.9349.1786.69混凝土屋顶46.7557.4067.8589.55
金属屋顶100.0099.0099.0097.41金属屋顶95.4594.8994.0395.45
黏土屋顶70.0874.6678.4488.41黏土屋顶81.4484.3387.8496.91
塑胶表面60.5257.6155.3477.99塑胶表面77.1352.2236.1887.71
沥青路面77.6370.3262.3376.48沥青路面75.7876.4070.3979.50
铁路78.7357.0172.4087.78林地97.3898.4797.6096.94
林地96.8899.4298.8396.10草地88.7587.7888.1094.86
草地77.5678.8875.2586.80裸土67.7773.4266.1191.03
裸土62.1451.4654.0572.49水体84.2190.1392.4392.76