基于CNN的吉林一号卫星城市土地覆被制图潜力评估
|
吕冬梅,马玥,李华朋
|
Evaluating the Potential of JL1 Remote Sensing Data in Urban Land Cover Classification Using Convolutional Neural Networks
|
Lü Dongmei,Yue Ma,Huapeng Li
|
|
表3 不同分类方法生产者精度对比
|
Table 3 Comparison of produce′s accuracy between different classification methods
|
|
地物类型 | S1实验区 PA/% | 地物类型 | S2实验区 PA/% |
---|
MLC | MLP | SVM | CNN | MLC | MLP | SVM | CNN |
---|
混凝土屋顶 | 32.35 | 56.93 | 49.17 | 86.69 | 混凝土屋顶 | 46.75 | 57.40 | 67.85 | 89.55 | 金属屋顶 | 100.00 | 99.00 | 99.00 | 97.41 | 金属屋顶 | 95.45 | 94.89 | 94.03 | 95.45 | 黏土屋顶 | 70.08 | 74.66 | 78.44 | 88.41 | 黏土屋顶 | 81.44 | 84.33 | 87.84 | 96.91 | 塑胶表面 | 60.52 | 57.61 | 55.34 | 77.99 | 塑胶表面 | 77.13 | 52.22 | 36.18 | 87.71 | 沥青路面 | 77.63 | 70.32 | 62.33 | 76.48 | 沥青路面 | 75.78 | 76.40 | 70.39 | 79.50 | 铁路 | 78.73 | 57.01 | 72.40 | 87.78 | 林地 | 97.38 | 98.47 | 97.60 | 96.94 | 林地 | 96.88 | 99.42 | 98.83 | 96.10 | 草地 | 88.75 | 87.78 | 88.10 | 94.86 | 草地 | 77.56 | 78.88 | 75.25 | 86.80 | 裸土 | 67.77 | 73.42 | 66.11 | 91.03 | 裸土 | 62.14 | 51.46 | 54.05 | 72.49 | 水体 | 84.21 | 90.13 | 92.43 | 92.76 |
|
|
|